Back to Search Start Over

The role of the gold-platinum interface in AuPt/TiO 2-catalyzed plasmon-induced reduction of CO 2 with water

Authors :
Leila Hammoud
Claire Strebler
Joumana Toufaily
Tayssir Hamieh
Valérie Keller
Valérie Caps
Maastricht Science Programme
RS: FSE MSP
Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA)
Université Libanaise
Lebanese University [Beirut] (LU)
Maastricht University [Maastricht]
CAPS, Valérie
Source :
Faraday Discussions, 242(0), 443-463. Royal Society of Chemistry, Faraday Discussions, Faraday Discussions, In press, ⟨10.1039/D2FD00094F⟩
Publication Year :
2023
Publisher :
Royal Society of Chemistry, 2023.

Abstract

International audience; Bimetallic gold–platinum nanoparticles have been widely studied in the fields of nanoalloys, catalysis and plasmonics. Many preparation methods can lead to the formation of these bimetallic nanoparticles (NPs), and the structure and related properties of the nanoalloy often depend on the preparation method used. Here we investigate the ability of thermal dimethylformamide (DMF) reduction to prepare bimetallic gold–platinum sub-nm clusters supported on titania. We find that deposition of Pt preferentially occurs on gold. Formation of sub-nm clusters (vs. NPs) appears to be dependent on the metal concentration used: clusters can be obtained for metal loadings up to 4 wt% but 7–8 nm NPs are formed for metal loadings above 8 wt%, as shown using high resolution transmission electron microscopy (HRTEM). X-ray photoelectron spectroscopy (XPS) shows electron-rich Au and Pt components in a pure metallic form and significant platinum enrichment of the surface, which increases with increasing Pt/Au ratio and suggests the presence of Au@Pt core–shell type structures. By contrast, titania-supported bimetallic particles (typically >7 nm) obtained by sodium borohydride (NaBH4) reduction in DMF, contain Au/Pt Janus-type objects in addition to oxidized forms of Pt as evidenced by HRTEM, which is in agreement with the lower Pt surface enrichment found by XPS. Both types of supported nanostructures contain a gold–platinum interface, as shown by the chemical interface damping, i.e. gold plasmon damping by Pt, found using UV-visible spectroscopy. Evaluation of the materials for plasmon-induced continuous flow CO2 reduction with water, shows that: (1) subnanometer metallic clusters are not suitable for CO2 reduction with water, producing hydrogen from the competing water reduction instead, thereby highlighting the plasmonic nature of the reaction; (2) the highest methane production rates are obtained for the highest Pt enrichments of the surface, i.e. the core–shell-like structures achieved by the thermal DMF reduction method; (3) selectivity towards CO2 reduction vs. the competing water reduction is enhanced by loading of the plasmonic NPs, i.e. coverage of the titania semi-conductor by plasmonic NPs. Full selectivity is achieved for loadings above 6 wt%, regardless of the NPs composition and alloy structure.

Details

Language :
English
ISSN :
13596640 and 13645498
Volume :
242
Database :
OpenAIRE
Journal :
Faraday Discussions
Accession number :
edsair.doi.dedup.....24493236a65ccb92851ba6aad92a4ae5
Full Text :
https://doi.org/10.1039/d2fd00094f