Back to Search Start Over

SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI

Authors :
Maria Petracca
Lazar Fleysher
Matilde Inglese
Sirio Cocozza
Kornelius Podranski
Mohamed-Mounir El Mendili
Source :
Journal of neuroimaging : official journal of the American Society of NeuroimagingReferences. 30(1)
Publication Year :
2019

Abstract

Background and purpose The advent of high and ultra-high-field MRI has significantly improved the investigation of infratentorial structures by providing high-resolution images. However, none of the publicly available methods for cerebellar image analysis has been optimized for high-resolution images yet. Methods We present the implementation of an automated algorithm-SUITer (spatially unbiased infratentorial for enhanced resolution) method for cerebellar lobules parcellation on high-resolution MR images acquired at both 3 and 7T MRI. SUITer was validated on five manually segmented data and compared with SUIT, FreeSurfer, and convolutional neural networks (CNN). SUITer was then applied to 3 and 7T MR images from 10 multiple sclerosis (MS) patients and 10 healthy controls (HCs). Results The difference in volumes estimation for the cerebellar grey matter (GM), between the manual segmentation (ground truth), SUIT, CNN, and SUITer was reduced when computed by SUITer compared to SUIT (5.56 vs. 29.23 mL) and CNN (5.56 vs. 9.43 mL). FreeSurfer showed low volumes difference (3.56 mL). SUITer segmentations showed a high correlation (R2 = .91) and a high overlap with manual segmentations for cerebellar GM (83.46%). SUITer also showed low volumes difference (7.29 mL), high correlation (R2 = .99), and a high overlap (87.44%) for cerebellar GM segmentations across magnetic fields. SUITer showed similar cerebellar GM volume differences between MS patients and HC at both 3T and 7T (7.69 and 7.76 mL, respectively). Conclusions SUITer provides accurate segmentations of infratentorial structures across different resolutions and MR fields.

Details

ISSN :
15526569
Volume :
30
Issue :
1
Database :
OpenAIRE
Journal :
Journal of neuroimaging : official journal of the American Society of NeuroimagingReferences
Accession number :
edsair.doi.dedup.....2435681a1bd1df76265aaa868f441e15