Back to Search Start Over

Data-driven quantitative modeling of bacterial active nematics

Authors :
Xiao Chen
Mingji Huang
Chenli Liu
Hugues Chaté
He Li
Minfeng Xiao
Xia-qing Shi
Hepeng Zhang
Source :
Proceedings of the National Academy of Sciences. 116:777-785
Publication Year :
2018
Publisher :
Proceedings of the National Academy of Sciences, 2018.

Abstract

Active matter comprises individual units that convert energy into mechanical motion. In many examples, such as bacterial systems and biofilament assays, constituent units are elongated and can give rise to local nematic orientational order. Such `active nematics' systems have attracted much attention from both theorists and experimentalists. However, despite intense research efforts, data-driven quantitative modeling has not been achieved, a situation mainly due to the lack of systematic experimental data and to the large number of parameters of current models. Here we introduce a new active nematics system made of swarming filamentous bacteria. We simultaneously measure orientation and velocity fields and show that the complex spatiotemporal dynamics of our system can be quantitatively reproduced by a new type of microscopic model for active suspensions whose important parameters are all estimated from comprehensive experimental data. This provides unprecedented access to key effective parameters and mechanisms governing active nematics. Our approach is applicable to different types of dense suspensions and shows a path towards more quantitative active matter research.<br />Comment: 9 pages, 7 figures

Details

ISSN :
10916490 and 00278424
Volume :
116
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....2430e384bc7f01aaaf23b2f15772a1dd