Back to Search Start Over

Sizing Up Allometric Scaling Theory

Authors :
Van M. Savage
Eric J. Deeds
Walter Fontana
Source :
PLoS Computational Biology, PLoS Computational Biology, Vol 4, Iss 9, p e1000171 (2008)
Publication Year :
2008
Publisher :
Public Library of Science, 2008.

Abstract

Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets.<br />Author Summary The rate at which an organism produces energy to live increases with body mass to the 3/4 power. Ten years ago West, Brown, and Enquist posited that this empirical relationship arises from the structure and dynamics of resource distribution networks such as the cardiovascular system. Using assumptions that capture physical and biological constraints, they defined a vascular network model that predicts a 3/4 scaling exponent. In our paper we clarify that this model generates the 3/4 exponent only in the limit of infinitely large organisms. Our calculations indicate that in the finite-size version of the model metabolic rate and body mass are not related by a pure power law, which we show is consistent with available data. We also show that this causes the model to produce scaling exponents significantly larger than the observed 3/4. We investigate how changes in certain assumptions about network structure affect the scaling exponent, leading us to identify discrepancies between available data and the predictions of the finite-size model. This suggests that the model, the data, or both, need reassessment. The challenge lies in pinpointing the physiological and evolutionary factors that constrain the shape of networks driving metabolic scaling.

Details

Language :
English
ISSN :
15537358 and 1553734X
Volume :
4
Issue :
9
Database :
OpenAIRE
Journal :
PLoS Computational Biology
Accession number :
edsair.doi.dedup.....240c16ae9342149bb58bd7151b3908ff