Back to Search
Start Over
Plasma Extracellular Vesicles in Children with OSA Disrupt Blood-Brain Barrier Integrity and Endothelial Cell Wound Healing in Vitro
- Source :
- International Journal of Molecular Sciences, Volume 20, Issue 24
- Publication Year :
- 2019
-
Abstract
- Pediatric obstructive sleep apnea (P-OSA) is associated with neurocognitive deficits and endothelial dysfunction, suggesting the possibility that disruption of the blood&ndash<br />brain barrier (BBB) may underlie these morbidities. Extracellular vesicles (EVs), which include exosomes, are small particles involved in cell&ndash<br />cell communications via different mechanisms and could play a role in OSA-associated end-organ injury. To examine the roles of EVs in BBB dysfunction, we recruited three groups of children: (a) absence of OSA or cognitive deficits (CL, n = 6), (b) OSA but no evidence of cognitive deficits (OSA-NC(&minus<br />), n = 12), and (c) OSA with evidence of neurocognitive deficits (OSA-NC(+), n = 12). All children were age-, gender-, ethnicity-, and BMI-z-score-matched, and those with OSA were also apnea&ndash<br />hypopnea index (AHI)-matched. Plasma EVs were characterized, quantified, and applied on multiple endothelial cell types (HCAEC, HIAEC, human HMVEC-D, HMVEC-C, HMVEC-L, and hCMEC/D3) while measuring monolayer barrier integrity and wound-healing responses. EVs from OSA children induced significant declines in hCMEC/D3 transendothelial impedance compared to CL (p &lt<br />0.001), and such changes were greater in NC(+) compared to NC(&minus<br />) (p &lt<br />0.01). The effects of EVs from each group on wound healing for HCAEC, HIAEC, HMVED-d, and hCMEC/D3 cells were similar, but exhibited significant differences across the three groups, with evidence of disrupted wound healing in P-OSA. However, wound healing in HMVEC-C was only affected by NC(+) (p &lt<br />0.01 vs. NC(&minus<br />) or controls (CO). Furthermore, no significant differences emerged in HMVEC-L cell wound healing across all three groups. We conclude that circulating plasma EVs in P-OSA disrupt the integrity of the BBB and exert adverse effects on endothelial wound healing, particularly among OSA-NC(+) children, while also exhibiting endothelial cell type selectivity. Thus, circulating EVs cargo may play important roles in the emergence of end-organ morbidity in pediatric OSA.
- Subjects :
- 0301 basic medicine
Male
electric cell–substrate impedance sensing (ECIS)
Cell
Cell Communication
extracellular vesicles (EVs), exosomes
Plasma
0302 clinical medicine
pediatric OSA
Endothelial dysfunction
Child
Spectroscopy
Cells, Cultured
Sleep Apnea, Obstructive
integumentary system
General Medicine
3. Good health
Computer Science Applications
Endothelial stem cell
medicine.anatomical_structure
Blood-Brain Barrier
Child, Preschool
Female
medicine.medical_specialty
Blood–brain barrier
Catalysis
Article
Inorganic Chemistry
03 medical and health sciences
Extracellular Vesicles
Internal medicine
hCMEC/D3 cells
medicine
Humans
Physical and Theoretical Chemistry
Molecular Biology
Wound Healing
business.industry
Organic Chemistry
Endothelial Cells
medicine.disease
In vitro
Microvesicles
respiratory tract diseases
Obstructive sleep apnea
neurocognitive deficits
030104 developmental biology
Endocrinology
business
Wound healing
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 14220067
- Volume :
- 20
- Issue :
- 24
- Database :
- OpenAIRE
- Journal :
- International journal of molecular sciences
- Accession number :
- edsair.doi.dedup.....23a590d1fe03d3951185d53787b5fcfa