Back to Search Start Over

Photometry of high-redshift blended galaxies using deep learning

Authors :
Nima Sedaghat
A. M. M. Trindade
A. Boucaud
Ben Moews
Caroline Heneka
Marc Huertas-Company
Emiliano Merlin
Madhura Killedar
Valerio Roscani
Emille E. O. Ishida
Marco Castellano
Andrea Tramacere
H. Dole
Rafael S. de Souza
AstroParticule et Cosmologie (APC (UMR_7164))
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Observatoire de Paris
PSL Research University (PSL)
Instituto de Astrofisica de Canarias (IAC)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)
Institut d'astrophysique spatiale (IAS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Laboratoire de Physique de Clermont (LPC)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112))
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Source :
Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2019, 491 (2), pp.2481-2495. ⟨10.1093/mnras/stz3056⟩, Monthly Notices of the Royal Astronomical Society, 2019, 491 (2), pp.2481-2495. ⟨10.1093/mnras/stz3056⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The new generation of deep photometric surveys requires unprecedentedly precise shape and photometry measurements of billions of galaxies to achieve their main science goals. At such depths, one major limiting factor is the blending of galaxies due to line-of-sight projection, with an expected fraction of blended galaxies of up to 50%. Current deblending approaches are in most cases either too slow or not accurate enough to reach the level of requirements. This work explores the use of deep neural networks to estimate the photometry of blended pairs of galaxies in monochrome space images, similar to the ones that will be delivered by the Euclid space telescope. Using a clean sample of isolated galaxies from the CANDELS survey, we artificially blend them and train two different network models to recover the photometry of the two galaxies. We show that our approach can recover the original photometry of the galaxies before being blended with $\sim$7% accuracy without any human intervention and without any assumption on the galaxy shape. This represents an improvement of at least a factor of 4 compared to the classical SExtractor approach. We also show that forcing the network to simultaneously estimate a binary segmentation map results in a slightly improved photometry. All data products and codes will be made public to ease the comparison with other approaches on a common data set.<br />Comment: 16 pages, 12 figures, submitted to MNRAS, comments welcome

Details

Language :
English
ISSN :
00358711 and 13652966
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2019, 491 (2), pp.2481-2495. ⟨10.1093/mnras/stz3056⟩, Monthly Notices of the Royal Astronomical Society, 2019, 491 (2), pp.2481-2495. ⟨10.1093/mnras/stz3056⟩
Accession number :
edsair.doi.dedup.....239b73624e57acbfcd25cb80cfcda8db