Back to Search
Start Over
Data from Echinomycin, a Small-Molecule Inhibitor of Hypoxia-Inducible Factor-1 DNA-Binding Activity
- Publication Year :
- 2023
- Publisher :
- American Association for Cancer Research (AACR), 2023.
-
Abstract
- The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor progression and metastasis. To identify inhibitors of HIF-1 DNA-binding activity, we expressed truncated HIF-1α and HIF-1β proteins containing the basic-helix-loop-helix and PAS domains. Expressed recombinant HIF-1α and HIF-1β proteins induced a specific DNA-binding activity to a double-stranded oligonucleotide containing a canonical hypoxia-responsive element (HRE). One hundred twenty-eight compounds previously identified in a HIF-1–targeted cell-based high-throughput screen of the National Cancer Institute 140,000 small-molecule library were tested in a 96-well plate ELISA for inhibition of HIF-1 DNA-binding activity. One of the most potent compounds identified, echinomycin (NSC-13502), a small-molecule known to bind DNA in a sequence-specific fashion, was further investigated. Electrophoretic mobility shift assay experiments showed that NSC-13502 inhibited binding of HIF-1α and HIF-1β proteins to a HRE sequence but not binding of the corresponding proteins to activator protein-1 (AP-1) or nuclear factor-κB (NF-κB) consensus sequences. Interestingly, chromatin immunoprecipitation experiments showed that NSC-13502 specifically inhibited binding of HIF-1 to the HRE sequence contained in the vascular endothelial growth factor (VEGF) promoter but not binding of AP-1 or NF-κB to promoter regions of corresponding target genes. Accordingly, NSC-13502 inhibited hypoxic induction of luciferase in U251-HRE cells and VEGF mRNA expression in U251 cells. Our results indicate that it is possible to identify small molecules that inhibit HIF-1 DNA binding to endogenous promoters.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....238d48c1c3f2e982729ce804b18fd49b
- Full Text :
- https://doi.org/10.1158/0008-5472.c.6494639