Back to Search Start Over

End-to-End Learning of OFDM Waveforms with PAPR and ACLR Constraints

Authors :
Mathieu Goutay
Faycal Ait Aoudia
Jakob Hoydis
Jean-Marie Gorce
Nokia Bell Labs [Nozay]
Modèle et algorithmes pour des systèmes de communication fiables (MARACAS)
CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Source :
GLOBECOM 2021-IEEE Global Communication Conference, GLOBECOM 2021-IEEE Global Communication Conference, Dec 2021, Madrid, Spain. pp.1-5, GLOBECOM 2021-IEEE Global Communication Conference, Dec 2021, Madrid, Spain. pp.1-5, ⟨10.1109/GCWkshps52748.2021.9682132⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

International audience; Orthogonal frequency-division multiplexing (OFDM) is widely used in modern wireless networks thanks to its efficient handling of multipath environment. However, it suffers from a poor peak-to-average power ratio (PAPR) which requires a large power backoff, degrading the power amplifier (PA) efficiency. In this work, we propose to use a neural network (NN) at the transmitter to learn a high-dimensional modulation scheme allowing to control the PAPR and adjacent channel leakage ratio (ACLR). On the receiver side, a NN-based receiver is implemented to carry out demapping of the transmitted bits. The two NNs operate on top of OFDM, and are jointly optimized in and end-to-end manner using a training algorithm that enforces constraints on the PAPR and ACLR. Simulation results show that the learned waveforms enable higher information rates than a tone reservation baseline, while satisfying predefined PAPR and ACLR targets.

Details

Database :
OpenAIRE
Journal :
GLOBECOM 2021-IEEE Global Communication Conference, GLOBECOM 2021-IEEE Global Communication Conference, Dec 2021, Madrid, Spain. pp.1-5, GLOBECOM 2021-IEEE Global Communication Conference, Dec 2021, Madrid, Spain. pp.1-5, ⟨10.1109/GCWkshps52748.2021.9682132⟩
Accession number :
edsair.doi.dedup.....237bcdd00bdfc0b26057fbc67c327170
Full Text :
https://doi.org/10.48550/arxiv.2106.16039