Back to Search Start Over

Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat

Authors :
Jelena Petrovic
Katarina Lazic
Jasna Saponjic
Aleksandar Kalauzi
Jelena Ciric
Source :
Behavioural Brain Research
Publication Year :
2013

Abstract

In order to identify the differences for the onset and progression of functionally distinct cholinergic innervation disorders, we investigated the effect of bilateral nucleus basalis (NB) and pedunculopontine tegmental nucleus (PPT) lesions on sleep/wake states and electroencephalographic (EEG) microstructure in rats, chronically implanted for sleep recording. Bilateral NB lesion transiently altered Wake/NREM duration within the sensorimotor cortex, and Wake/REM duration within the motor cortex, while there was no change in the sleep/wake states distributions following the bilateral PPT lesion. Bilateral PPT lesion sustainably increased the Wake/REM and REM/Wake transitions followed by inconsistent dysregulation of the NREM/REM and REM/NREM transitions in sensorimotor cortex, but oppositely by their increment throughout four weeks in motor cortex. Bilateral NB lesion sustainably decreased the NREM/REM and REM/NREM transitions during four weeks in the sensorimotor cortex, but oppositely increased them in the motor cortex. We have shown that the sustained beta and gamma augmentation within the sensorimotor and motor cortex, and across all sleep/wake states, simultaneously with Wake delta amplitude attenuation only within the sensorimotor cortex, were the underlying EEG microstructure for the sleep/wake states-transitions structure disturbance following bilateral PPT lesion. In contrast, the bilateral NB lesion only augmented REM theta in sensorimotor cortex during three weeks. We have shown that the NB and PPT lesions induced differing, structure-related EEG microstructure and transition structure disturbances particularly expressed in motor cortex during NREM and REM sleep. We evidenced for the first time the different topographical expression of the functionally distinct cholinergic neuronal innervation impairment in rat. (C) 2013 Elsevier B.V. All rights reserved. Serbian Ministry of Education, Science and Technological Development [OI 173022]

Details

ISSN :
18727549
Volume :
256
Database :
OpenAIRE
Journal :
Behavioural brain research
Accession number :
edsair.doi.dedup.....236bba381337a66e0a6fb5ed263370a7