Back to Search
Start Over
A dynamic neural network model for predicting risk of Zika in real time
- Source :
- BMC Medicine, BMC Medicine, Vol 17, Iss 1, Pp 1-16 (2019)
- Publication Year :
- 2018
-
Abstract
- Background In 2015, the Zika virus spread from Brazil throughout the Americas, posing an unprecedented challenge to the public health community. During the epidemic, international public health officials lacked reliable predictions of the outbreak’s expected geographic scale and prevalence of cases, and were therefore unable to plan and allocate surveillance resources in a timely and effective manner. Methods In this work, we present a dynamic neural network model to predict the geographic spread of outbreaks in real time. The modeling framework is flexible in three main dimensions (i) selection of the chosen risk indicator, i.e., case counts or incidence rate; (ii) risk classification scheme, which defines the high-risk group based on a relative or absolute threshold; and (iii) prediction forecast window (1 up to 12 weeks). The proposed model can be applied dynamically throughout the course of an outbreak to identify the regions expected to be at greatest risk in the future. Results The model is applied to the recent Zika epidemic in the Americas at a weekly temporal resolution and country spatial resolution, using epidemiological data, passenger air travel volumes, and vector habitat suitability, socioeconomic, and population data for all affected countries and territories in the Americas. The model performance is quantitatively evaluated based on the predictive accuracy of the model. We show that the model can accurately predict the geographic expansion of Zika in the Americas with the overall average accuracy remaining above 85% even for prediction windows of up to 12 weeks. Conclusions Sensitivity analysis illustrated the model performance to be robust across a range of features. Critically, the model performed consistently well at various stages throughout the course of the outbreak, indicating its potential value at any time during an epidemic. The predictive capability was superior for shorter forecast windows and geographically isolated locations that are predominantly connected via air travel. The highly flexible nature of the proposed modeling framework enables policy makers to develop and plan vector control programs and case surveillance strategies which can be tailored to a range of objectives and resource constraints. Electronic supplementary material The online version of this article (10.1186/s12916-019-1389-3) contains supplementary material, which is available to authorized users.
- Subjects :
- lcsh:Medicine
Zika virus
03 medical and health sciences
0302 clinical medicine
Zika
Econometrics
Range (statistics)
Dynamic neural network
Medicine
Humans
030212 general & internal medicine
Epidemics
Selection (genetic algorithm)
Vector control
biology
business.industry
Zika Virus Infection
lcsh:R
Outbreak
International health
General Medicine
Epidemic risk prediction
biology.organism_classification
Temporal resolution
Neural Networks, Computer
Public Health
Americas
Scale (map)
business
030217 neurology & neurosurgery
Brazil
Research Article
Subjects
Details
- ISSN :
- 17417015
- Volume :
- 17
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC medicine
- Accession number :
- edsair.doi.dedup.....233b8e8fcc7e0412f5b9fb6df11cf1e4