Back to Search
Start Over
Predicting readmission risk with institution-specific prediction models
- Source :
- Artificial intelligence in medicine. 65(2)
- Publication Year :
- 2015
-
Abstract
- ObjectiveThe ability to predict patient readmission risk is extremely valuable for hospitals, especially under the Hospital Readmission Reduction Program of the Center for Medicare and Medicaid Services which went into effect starting October 1, 2012. There is a plethora of work in the literature that deals with developing readmission risk prediction models, but most of them do not have sufficient prediction accuracy to be deployed in a clinical setting, partly because different hospitals may have different characteristics in their patient populations. Methods and materialsWe propose a generic framework for institution-specific readmission risk prediction, which takes patient data from a single institution and produces a statistical risk prediction model optimized for that particular institution and, optionally, for a specific condition. This provides great flexibility in model building, and is also able to provide institution-specific insights in its readmitted patient population. We have experimented with classification methods such as support vector machines, and prognosis methods such as the Cox regression. We compared our methods with industry-standard methods such as the LACE model, and showed the proposed framework is not only more flexible but also more effective. ResultsWe applied our framework to patient data from three hospitals, and obtained some initial results for heart failure (HF), acute myocardial infarction (AMI), pneumonia (PN) patients as well as patients with all conditions. On Hospital 2, the LACE model yielded AUC 0.57, 0.56, 0.53 and 0.55 for AMI, HF, PN and All Cause readmission prediction, respectively, while the proposed model yielded 0.66, 0.65, 0.63, 0.74 for the corresponding conditions, all significantly better than the LACE counterpart. The proposed models that leverage all features at discharge time is more accurate than the models that only leverage features at admission time (0.66 vs. 0.61 for AMI, 0.65 vs. 0.61 for HF, 0.63 vs. 0.56 for PN, 0.74 vs. 0.60 for All Cause). Furthermore, the proposed admission-time models already outperform the performance of LACE, which is a discharge-time model (0.61 vs. 0.57 for AMI, 0.61 vs. 0.56 for HF, 0.56 vs. 0.53 for PN, 0.60 vs. 0.55 for All Cause). Similar conclusions can be drawn from other hospitals as well. The same performance comparison also holds for precision and recall at top-decile predictions. Most of the performance improvements are statistically significant. ConclusionsThe institution-specific readmission risk prediction framework is more flexible and more effective than the one-size-fit-all models like the LACE, sometimes twice and three-time more effective. The admission-time models are able to give early warning signs compared to the discharge-time models, and may be able to help hospital staff intervene early while the patient is still in the hospital.
- Subjects :
- medicine.medical_specialty
Support Vector Machine
Proportional hazards model
business.industry
Medicine (miscellaneous)
Models, Theoretical
Patient Readmission
Risk Assessment
Artificial Intelligence
Emergency medicine
Early warning signs
medicine
Leverage (statistics)
Humans
Single institution
Risk assessment
business
Medicaid
Readmission risk
Predictive modelling
Simulation
Proportional Hazards Models
Subjects
Details
- ISSN :
- 18732860
- Volume :
- 65
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Artificial intelligence in medicine
- Accession number :
- edsair.doi.dedup.....2336eaac0cb0da70863a7baa5eb8ecf5