Back to Search Start Over

EFAR-MMLA: An Evaluation Framework to Assess and Report Generalizability of Machine Learning Models in MMLA

Authors :
Luis P. Prieto
Reet Kasepalu
Pankaj Chejara
Adolfo Ruiz-Calleja
María Jesús Rodríguez-Triana
S. Shankar
Source :
Sensors (Basel, Switzerland), UVaDOC. Repositorio Documental de la Universidad de Valladolid, instname, Sensors, Vol 21, Iss 2863, p 2863 (2021), Sensors, Volume 21, Issue 8
Publication Year :
2021
Publisher :
MDPI, 2021.

Abstract

Producción Científica<br />Multimodal Learning Analytics (MMLA) researchers are progressively employing machine learning (ML) techniques to develop predictive models to improve learning and teaching practices. These predictive models are often evaluated for their generalizability using methods from the ML domain, which do not take into account MMLA’s educational nature. Furthermore, there is a lack of systematization in model evaluation in MMLA, which is also reflected in the heterogeneous reporting of the evaluation results. To overcome these issues, this paper proposes an evaluation framework to assess and report the generalizability of ML models in MMLA (EFAR-MMLA). To illustrate the usefulness of EFAR-MMLA, we present a case study with two datasets, each with audio and log data collected from a classroom during a collaborative learning session. In this case study, regression models are developed for collaboration quality and its sub-dimensions, and their generalizability is evaluated and reported. The framework helped us to systematically detect and report that the models achieved better performance when evaluated using hold-out or cross-validation but quickly degraded when evaluated across different student groups and learning contexts. The framework helps to open up a “wicked problem” in MMLA research that remains fuzzy (i.e., the generalizability of ML models), which is critical to both accumulating knowledge in the research community and demonstrating the practical relevance of these techniques.<br />Fondo Europeo de Desarrollo Regional - Agencia Nacional de Investigación (grants TIN2017-85179-C3-2-R and TIN2014-53199-C3-2-R)<br />Fondo Europeo de Desarrollo Regional - Junta de Castilla y León (grant VA257P18)<br />Comisión Europea (grant 588438-EPP-1- 2017-1-EL-EPPKA2-KA)

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
8
Database :
OpenAIRE
Journal :
Sensors (Basel, Switzerland)
Accession number :
edsair.doi.dedup.....2322b217f70541e6d36be4f68350a22a