Back to Search Start Over

Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing

Authors :
Miguel C. Soriano
Gian Luca Giorgi
Valentina Parigi
Rodrigo Martínez-Peña
Roberta Zambrini
Johannes Nokkala
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Govern de les Illes Balears
European Commission
Universidad de Las Islas Baleares
European Research Council
Ministerio de Economía y Competitividad (España)
Instituto de fisic Interdisciplinar y Sistemas Complejos ( IFISC (CSIC-UIB))
Universitat de les Illes Balears (UIB)
Laboratoire Kastler Brossel (LKB [Collège de France])
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Collège de France (CdF (institution))
Source :
Communications Physics, Vol 4, Iss 1, Pp 1-11 (2021), Digital.CSIC. Repositorio Institucional del CSIC, instname, Communications Physics, Communications Physics, Nature Research, 2021, 4 (1), ⟨10.1038/s42005-021-00556-w⟩, Digital.CSIC: Repositorio Institucional del CSIC, Consejo Superior de Investigaciones Científicas (CSIC)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

We establish the potential of continuous-variable Gaussian states of linear dynamical systems for machine learning tasks. Specifically, we consider reservoir computing, an efficient framework for online time series processing. As a reservoir we consider a quantum harmonic network modeling e.g. linear quantum optical systems. We prove that unlike universal quantum computing, universal reservoir computing can be achieved without non-Gaussian resources. We find that encoding the input time series into Gaussian states is both a source and a means to tune the nonlinearity of the overall input-output map. We further show that the full potential of the proposed model can be reached by encoding to quantum fluctuations, such as squeezed vacuum, instead of classical intense fields or thermal fluctuations. Our results introduce a new research paradigm for reservoir computing harnessing the dynamics of a quantum system and the engineering of Gaussian quantum states, pushing both fields into a new direction.<br />We acknowledge the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESCproject (PID2019-109094GB-C21 and C-22 / AEI/ 10.13039/501100011033).We also acknowledgefunding by CAIB through the QUAREC project (PRD2018/47). The work of MCS has been supportedby MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal” Fellowship (RYC-2015-18140). VP acknowledges financial supportfrom the European Research Council under the Consol-idator Grant COQCOoN (Grant No. 820079).

Details

Language :
English
ISSN :
23993650
Volume :
4
Issue :
1
Database :
OpenAIRE
Journal :
Communications Physics
Accession number :
edsair.doi.dedup.....231fe1d0c5de11590236fda823c6922a
Full Text :
https://doi.org/10.1038/s42005-021-00556-w⟩