Back to Search Start Over

$Spitzer$ Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf

Authors :
C. Han
Richard Barry
Seung-Lee Kim
K. A. Rybicki
Chung-Uk Lee
Akihiko Fukui
Tianshu Wang
Fumio Abe
Shude Mao
Paul J. Tristram
Naoki Koshimoto
Takahiro Sumi
Sebastiano Calchi Novati
Masayuki Nagakane
Sang-Mok Cha
Igor Soszyński
Dong-Jin Kim
Richard W. Pogge
Yutaka Matsubara
Geoffery Bryden
Man Cheung Alex Li
W. Zang
Jennifer C. Yee
R. Poleski
Wei Zhu
S. Miyazaki
Haruno Suematsu
D. J. Lee
Yoon-Hyun Ryu
Andrzej Udalski
Clément Ranc
Michał K. Szymański
Calen B. Henderson
Keivan G. Stassun
Yasushi Muraki
Yuki Hirao
Yongseok Lee
Atsunori Yonehara
Yossi Shvartzvald
Aparna Bhattacharya
In-Gu Shin
Martin Donachie
Denis J. Sullivan
Pascal Fouqué
Spitzer Team
Przemek Mróz
Michael D. Albrow
Marcin Wrona
David P. Bennett
B. G. Park
Ian A. Bond
Sean Carey
B. Scott Gaudi
Szymon Kozłowski
Yoshitaka Itow
Youn Kil Jung
Iona Kondo
Matthew T. Penny
Charles A. Beichman
Andrew Gould
Paweł Pietrukowicz
Hyoun-Woo Kim
K. Ulaczyk
K. H. Hwang
Savannah Jacklin
Sun-Ju Chung
Daisuke Suzuki
Patryk Iwanek
Nicholas J. Rattenbury
Jan Skowron
Publication Year :
2019

Abstract

We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q \sim 2\times10^{-4}$. The planetary signal, which is characterized by a short $(\sim 1~{\rm day})$ "bump" on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a "Hollywood" geometry. Combined with the source proper motion measured from $Gaia$, the $Spitzer$ satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of $M_{\rm p} = 13.9\pm1.6~M_{\oplus}$ orbiting a mid M-dwarf with a mass of $M_{\rm h} = 0.23\pm0.03~M_{\odot}$. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields $M_{\rm p} = 1.2\pm0.2~M_{\oplus}$ and $M_{\rm h} = 0.15\pm0.02~M_{\odot}$. By combining the microlensing and $Gaia$ data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance $D_{\rm L} \sim 6\pm1~{\rm kpc}$. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.<br />34 pages, 8 figures, Submitted to AAS journal

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....231020ff30c65091b56330bdd952829b