Back to Search
Start Over
Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4
- Source :
- Proceedings of the National Academy of Sciences of the United States of America. 106(5)
- Publication Year :
- 2009
-
Abstract
- Temperature-activated transient receptor potential ion channels (thermoTRPs) are polymodal detectors of various stimuli including temperature, voltage, and chemicals. To date, it is not known how TRP channels integrate the action of such disparate stimuli. Identifying specific residues required for channel-activation by distinct stimuli is necessary for understanding overall TRP channel function. TRPV3 is activated by warm temperatures and various chemicals, and is modulated by voltage. One potent activator of TRPV3 is 2-aminoethyl diphenylborinate (2-APB), a synthetic chemical that modulates many TRP channels. In a high-throughput mutagenesis screen of ≈14,000 mutated mouse TRPV3 clones, we found 2 residues (H426 and R696) specifically required for sensitivity of TRPV3 to 2-APB, but not to camphor or voltage. The cytoplasmic N-terminal mutation H426N in human, dog, and frog TRPV3 also effectively abolished 2-APB activation without affecting camphor responses. Interestingly, chicken TRPV3 is weakly sensitive to 2-APB, and the equivalent residue at 426 is an asparagine (N). Mutating this residue to histidine induced 2-APB sensitivity of chicken TRPV3 to levels comparable for other TRPV3 orthologs. The cytoplasmic C-terminal mutation R696K in the TRP box displayed 2-APB specific deficits only in the presence of extracellular calcium, suggesting involvement in gating. TRPV4, a related thermoTRP, is 2-APB insensitive and has variant sequences at both residues identified here. Remarkably, mutating these 2 residues in TRPV4 to TRPV3 sequences (N426H and W737R) was sufficient to induce TRPV3-like 2-APB sensitivity. Therefore, 2-APB activation of TRPV3 is separable from other activation mechanisms, and depends on 2 cytoplasmic residues.
- Subjects :
- TRPV4
Boron Compounds
Molecular Sequence Data
TRPV Cation Channels
Gating
Cell Line
Transient receptor potential channel
Humans
Asparagine
Amino Acid Sequence
Peptide sequence
Histidine
Ion channel
DNA Primers
Multidisciplinary
Base Sequence
Sequence Homology, Amino Acid
Chemistry
Mutagenesis
Temperature
Biological Sciences
Biochemistry
Amino Acid Substitution
Biophysics
Mutagenesis, Site-Directed
Calcium
sense organs
Subjects
Details
- ISSN :
- 10916490
- Volume :
- 106
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....224aa985e832067363fc0b4d44d32d59