Back to Search
Start Over
Cancer growth regulation by 4-hydroxynonenal
- Source :
- Free radical biologymedicine. 111
- Publication Year :
- 2016
-
Abstract
- While reactive oxygen species (ROS) gain their carcinogenic effects by DNA mutations, if generated in the vicinity of genome, lipid peroxidation products, notably 4-hydroxynonenal (HNE), have much more complex modes of activities. Namely, while ROS are short living and have short efficiency distance range (in nm or µm) HNE has strong binding affinity for proteins, thus forming relatively stable adducts. Hence, HNE can diffuse from the site or origin changing structure and function of respective proteins. Consequently HNE can influence proliferation, differentiation and apoptosis of cancer cells on one hand, while on the other it can affect genome functionality, too. Although HNE is considered to be important factor of carcinogenesis due to its ability to covalently bind to DNA, it might also be cytotoxic for cancer cells, as well as it can modulate their growth. In addition to direct cytotoxicity, HNE is also involved in activity mechanisms by which several cytostatic drugs and radiotherapy exhibit their anticancer effects. Complementary to that, the metabolic pathway for HNE detoxification through RLIP76, which is enhanced in cancer, may be a target for anti-cancer treatments. In addition, some cancer cells can undergo apoptosis or necrosis, if exposed to supraphysiological HNE levels in the cancer microenvironment, especially if challenged additionally by pro-oxidative cytostatics and/or inflammation. These findings could explain previously observed disappearance of HNE from invading cancer cells, which is associated with the increase of HNE in non- malignant cells close to invading cancer utilizing cardiolipin as the source of cancer-inhibiting HNE.
- Subjects :
- 0301 basic medicine
Carcinogenesis
Cardiolipins
NF-E2-Related Factor 2
medicine.disease_cause
Biochemistry
4-Hydroxynonenal
03 medical and health sciences
chemistry.chemical_compound
4-Hydroxynonenal (HNE)
Lipid peroxidation
Oxidative stress
Cancer
Cancer therapy
Pathophysiology
Growth regulation
Signaling
0302 clinical medicine
Physiology (medical)
Neoplasms
medicine
Cardiolipin
Humans
Carcinogen
Protein Kinase C
Cell Proliferation
chemistry.chemical_classification
Reactive oxygen species
Aldehydes
GTPase-Activating Proteins
NF-kappa B
medicine.disease
Cell biology
Gene Expression Regulation, Neoplastic
030104 developmental biology
chemistry
Apoptosis
030220 oncology & carcinogenesis
Cancer cell
ATP-Binding Cassette Transporters
Tumor Suppressor Protein p53
Oxidation-Reduction
Proto-Oncogene Proteins c-akt
Signal Transduction
Subjects
Details
- ISSN :
- 18734596
- Volume :
- 111
- Database :
- OpenAIRE
- Journal :
- Free radical biologymedicine
- Accession number :
- edsair.doi.dedup.....22403ca6edeb94d683e777401b610433