Back to Search Start Over

Release from optimal compressive force suppresses osteoclast differentiation

Authors :
Junichiro Iida
Mino Matsuno
Tomokazu Hasegawa
Hajime Minamikawa
Takashi Kikuiri
Masaaki Ikeda
Yoshitaka Yoshimura
Kuniaki Suzuki
Takako Hayakawa
Kumu Fukushima
Source :
Molecular medicine reports. 14(5):4699-4705
Publication Year :
2016
Publisher :
Spandidos Publications, 2016.

Abstract

Bone remodeling is an important factor in orthodontic tooth movement. During orthodontic treatment, osteoclasts are subjected to various mechanical stimuli, and this promotes or inhibits osteoclast differentiation and fusion. It has been previously reported that the release from tensile force induces osteoclast differentiation. However, little is known about how release from compressive force affects osteoclasts. The present study investigated the effects of release from compressive force on osteoclasts. The number of tartrate-resistant acid phosphatase (TRAP) -positive multinucleated osteoclasts derived from RAW264.7 cells was counted, and gene expression associated with osteoclast differentiation and fusion in response to release from compressive force was evaluated by reverse transcription-quantitative polymerase chain reaction. Osteoclast number was increased by optimal compressive force application. On release from this force, osteoclast differentiation and fusion were suppressed. mRNA expression of NFATc1 was inhibited for 6 h subsequent to release from compressive force. mRNA expression of the other osteoclast-specific genes, TRAP, RANK, matrix metalloproteinase-9, cathepsin-K, chloride channel 7, ATPase H+ transporting vacuolar proton pump member I, dendritic cell-specific transmembrane protein and osteoclast stimulatory transmembrane protein (OC-STAMP) was significantly inhibited at 3 h following release from compressive force compared with control cells. These findings suggest that release from optimal compressive force suppresses osteoclast differentiation and fusion, which may be important for developing orthodontic treatments.

Details

Language :
English
ISSN :
17912997
Volume :
14
Issue :
5
Database :
OpenAIRE
Journal :
Molecular medicine reports
Accession number :
edsair.doi.dedup.....2233a10d41608458d4fd13e673998abb