Back to Search Start Over

Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors

Authors :
Lily Yeh Jan
Christian J. Peters
Yuh Nung Jan
Xi Huang
Susan Younger
Ye He
Beverly J. Piggott
Source :
Genes & development, vol 33, iss 23-24, Genes Dev
Publication Year :
2019
Publisher :
eScholarship, University of California, 2019.

Abstract

Proliferating cells, typically considered “nonexcitable,” nevertheless, exhibit regulation by bioelectric signals. Notably, voltage-gated sodium channels (VGSC) that are crucial for neuronal excitability are also found in progenitors and up-regulated in cancer. Here, we identify a role for VGSC in proliferation of Drosophila neuroblast (NB) lineages within the central nervous system. Loss of paralytic (para), the sole gene that encodes Drosophila VGSC, reduces neuroblast progeny cell number. The type II neuroblast lineages, featuring a population of transit-amplifying intermediate neural progenitors (INP) similar to that found in the developing human cortex, are particularly sensitive to para manipulation. Following a series of asymmetric divisions, INPs normally exit the cell cycle through a final symmetric division. Our data suggests that loss of Para induces apoptosis in this population, whereas overexpression leads to an increase in INPs and overall neuroblast progeny cell numbers. These effects are cell autonomous and depend on Para channel activity. Reduction of Para expression not only affects normal NB development, but also strongly suppresses brain tumor mass, implicating a role for Para in cancer progression. To our knowledge, our studies are the first to identify a role for VGSC in neural progenitor proliferation. Elucidating the contribution of VGSC in proliferation will advance our understanding of bioelectric signaling within development and disease states.

Details

Database :
OpenAIRE
Journal :
Genes & development, vol 33, iss 23-24, Genes Dev
Accession number :
edsair.doi.dedup.....21f8cf360fd82d2bc2b7db7ed44cfeeb