Back to Search Start Over

Exathlon

Authors :
Nesime Tatbul
Yanlei Diao
Vincent Jacob
Fei Song
Arnaud Stiegler
Bijan Rad
Rich Data Analytics at Cloud Scale (CEDAR)
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Intel Corporation [USA]
MIT Computer Science & Artificial Intelligence Lab (MIT CSAIL)
Massachusetts Institute of Technology (MIT)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Inria Saclay - Ile de France
Source :
Proceedings of the VLDB Endowment (PVLDB), Proceedings of the VLDB Endowment (PVLDB), 2021, Proceedings of the VLDB Endowment (PVLDB), VLDB Endowment, 2021
Publication Year :
2021
Publisher :
Association for Computing Machinery (ACM), 2021.

Abstract

International audience; Access to high-quality data repositories and benchmarks have been instrumental in advancing the state of the art in many experimental research domains. While advanced analytics tasks over time series data have been gaining lots of attention, lack of such community resources severely limits scientific progress. In this paper, we present Exathlon, the first comprehensive public benchmark for explainable anomaly detection over high-dimensional time series data. Exathlon has been systematically constructed based on real data traces from repeated executions of large-scale stream processing jobs on an Apache Spark cluster. Some of these executions were intentionally disturbed by introducing instances of six different types of anomalous events (e.g., misbehaving inputs, resource contention, process failures). For each of the anomaly instances, ground truth labels for the root cause interval as well as those for the extended effect interval are provided, supporting the development and evaluation of a wide range of anomaly detection (AD) and explanation discovery (ED) tasks. We demonstrate the practical utility of Exathlon's dataset, evaluation methodology, and end-toend data science pipeline design through an experimental study with three state-of-the-art AD and ED techniques.

Details

ISSN :
21508097
Volume :
14
Database :
OpenAIRE
Journal :
Proceedings of the VLDB Endowment
Accession number :
edsair.doi.dedup.....21c42e28d1dae11d5928dc063554a8d7