Back to Search Start Over

Dérivabilité ponctuelle d'une intégrale liée aux fonctions de Bernoulli

Authors :
Régis de la Bretèche
Gérald Tenenbaum
Institut de Mathématiques de Jussieu (IMJ)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Proceedings of the American Mathematical Society, Proceedings of the American Mathematical Society, 2015, 143 (11), pp.4791-4796. ⟨10.1090/S0002-9939-2015-12650-0⟩, Proceedings of the American Mathematical Society, American Mathematical Society, 2015, 143 (11), pp.4791-4796. ⟨10.1090/S0002-9939-2015-12650-0⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Let B ( ϑ ) B (\vartheta ) denote the first normalised Bernoulli function, and consider the series f ( ϑ ) := ∑ n ⩾ 1 B ( n ϑ ) / n f(\vartheta ):=\sum _{n\geqslant 1}B(n\vartheta )/n . In a previous paper, we determined the set E ∗ E^* of those real numbers ϑ \vartheta at which f ( ϑ ) f(\vartheta ) converges. Let B 2 ( ϑ ) B_2(\vartheta ) designate the second Bernoulli function and let ⟨ t ⟩ \langle t\rangle denote the fractional part of the real number t t . Put F ( ϑ ) := ∑ n ⩾ 1 B 2 ( n ϑ ) / 2 n 2 = π 2 / 72 + ∫ 0 ϑ f ( t ) d t . F(\vartheta ):=\sum _{n\geqslant 1}{B_2(n\vartheta )/ 2n^2}=\pi ^2/72+\int _0^\vartheta f(t)\mathrm {d} t. It has been shown by Báez-Duarte, Balazard, Landreau and Saias (2005) that F ( ϑ ) F(\vartheta ) and ∫ 0 ∞ ⟨ t ⟩ ⟨ ϑ t ⟩ d t / t 2 \int _0^\infty \langle t\rangle \langle \vartheta t\rangle \mathrm {d} t/t^2 have the same differentiability points. Moreover, using delicate functional equations, Balazard and Martin recently proved that the corresponding set is precisely E := E ∗ ∖ Q E:=E^*\smallsetminus \mathbb {Q} and that F ′ ( ϑ ) = f ( ϑ ) F’(\vartheta )=f(\vartheta ) whenever ϑ ∈ E \vartheta \in E . We provide a short, direct proof of this last result, based on standard results from Diophantine approximation theory and uniform distribution theory.

Details

Language :
French
ISSN :
00029939 and 10886826
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society, Proceedings of the American Mathematical Society, 2015, 143 (11), pp.4791-4796. ⟨10.1090/S0002-9939-2015-12650-0⟩, Proceedings of the American Mathematical Society, American Mathematical Society, 2015, 143 (11), pp.4791-4796. ⟨10.1090/S0002-9939-2015-12650-0⟩
Accession number :
edsair.doi.dedup.....219d7d78b8052cbec77bc5b7c0d00f59