Back to Search Start Over

High order variational integrators in the optimal control of mechanical systems

Authors :
Cédric M. Campos
Emmanuel Trélat
Sina Ober-Blöbaum
Instituto de Ciencias Matemàticas [Madrid] (ICMAT)
Universidad Carlos III de Madrid [Madrid] (UC3M)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
University of Paderborn
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
European Project: 264735,EC:FP7:PEOPLE,FP7-PEOPLE-2010-ITN,SADCO(2011)
Institut des Sciences de la Terre (ISTerre)
Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Source :
Discrete and Continuous Dynamical Systems-Series A, Discrete and Continuous Dynamical Systems-Series A, 2015, 35 (9), pp.4193-4223. ⟨10.3934/dcds.2015.35.4193⟩, Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2015, 35 (9), pp.4193-4223. ⟨10.3934/dcds.2015.35.4193⟩
Publication Year :
2015
Publisher :
American Institute of Mathematical Sciences (AIMS), 2015.

Abstract

In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.<br />25 pages, 9 figures, 1 table, submitted to DCDS-A

Details

ISSN :
15535231 and 10780947
Volume :
35
Database :
OpenAIRE
Journal :
Discrete & Continuous Dynamical Systems - A
Accession number :
edsair.doi.dedup.....2197c287d962f46da86ab8db9abf80e7
Full Text :
https://doi.org/10.3934/dcds.2015.35.4193