Back to Search Start Over

Functionality-based formation of secondary organic aerosol from m-xylene photooxidation

Authors :
Yixin Li
Jiayun Zhao
Mario Gomez-Hernandez
Michael Lavallee
Natalie M. Johnson
Renyi Zhang
Publication Year :
2022

Abstract

Photooxidation of volatile organic compounds (VOCs) produces condensable oxidized organics (COOs) to yield secondary organic aerosol (SOA), but the fundamental chemical mechanism for gas-to-particle conversion remains uncertain. Here we elucidate the production of COOs and their roles in SOA and brown carbon (BrC) formation from m-xylene oxidation by simultaneously monitoring the evolution of gas-phase products and aerosol properties in an environmental chamber. Four COO types with the distinct functionalities of dicarbonyls, carboxylic acids, polyhydroxy aromatics/quinones, and nitrophenols are identified from early-generation oxidation, with the yields of 25 %, 37 %, 5 %, and 3 %, respectively. SOA formation occurs via several heterogeneous processes, including interfacial interaction, ionic dissociation/acid–base reaction, and oligomerization, with the yields of (20 ± 4) % and (32 ± 7) % at 10 % and 70 % relative humidity (RH), respectively. Chemical speciation shows the dominant presence of oligomers, nitrogen-containing organics, and carboxylates at high RH and carboxylates at low RH. The identified BrC includes N-heterocycles/N-heterochains and nitrophenols, as evident from reduced single scattering albedo. The measured uptake coefficient (γ) for COOs is dependent on the functionality, ranging from 3.7 × 10−4 to 1.3 × 10−2. A functionality-based kinetic framework is developed to predict SOA production from the observed concentrations and uptake coefficients for COOs, which reproduces the measurement from m-xylene oxidation. Our results reveal that photochemical oxidation of m-xylene represents a major source for SOA and BrC formation under urban environments, because of its large abundance, high reactivity with OH, and high yields for COOs.

Subjects

Subjects :
Atmospheric Science

Details

Language :
English
ISSN :
16807324
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....21752d1addd58c178bb90551fe7e1a00