Back to Search Start Over

An experimentally informed statistical elasto-plastic mineralised collagen fibre model at the micrometre and nanometre lengthscale

Authors :
Françoise Peyrin
Uwe Wolfram
Philippe K. Zysset
Peter Varga
Alexander Groetsch
Alexandra Pacureanu
Rayet, Béatrice
School of Engineering and Physical Sciences [Edinburgh] (EPS-HWU)
Heriot-Watt University [Edinburgh] (HWU)
Center for Biomedical Engineering Research (ARTORG)
University of Bern
AO Research institute Davos [Davos, Switzerland] (ARI)
AO Foundation
European Synchroton Radiation Facility [Grenoble] (ESRF)
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Scientific Reports, Groetsch, Alexander; Zysset, Philippe; Varga, Peter; Pacureanu, Alexandra; Peyrin, Françoise; Wolfram, Uwe (2021). An experimentally informed statistical elasto-plastic mineralised collagen fibre model at the micrometre and nanometre lengthscale. Scientific reports, 11(1), p. 15539. Springer Nature 10.1038/s41598-021-93505-0 , Scientific Reports, Vol 11, Iss 1, Pp 1-22 (2021), 'Scientific Reports ', vol: 11, pages: 15539-1-15539-22 (2021), Scientific Reports, 2021, 11 (1), pp.15539-1-15539-22. ⟨10.1038/s41598-021-93505-0⟩
Publication Year :
2021

Abstract

Bone is an intriguingly complex material. It combines high strength, toughness and lightweight via an elaborate hierarchical structure. This structure results from a biologically driven self-assembly and self-organisation, and leads to different deformation mechanisms along the length scales. Characterising multiscale bone mechanics is fundamental to better understand these mechanisms including changes due to bone-related diseases. It also guides us in the design of new bio-inspired materials. A key-gap in understanding bone’s behaviour exists for its fundamental mechanical unit, the mineralised collagen fibre, a composite of organic collagen molecules and inorganic mineral nanocrystals. Here, we report an experimentally informed statistical elasto-plastic model to explain the fibre behaviour including the nanoscale interplay and load transfer with its main mechanical components. We utilise data from synchrotron nanoscale imaging, and combined micropillar compression and synchrotron X-ray scattering to develop the model. We see that a 10-15% micro- and nanomechanical heterogeneity in mechanical properties is essential to promote the ductile microscale behaviour preventing an abrupt overall failure even when individual fibrils have failed. We see that mineral particles take up 45% of strain compared to collagen molecules while interfibrillar shearing seems to enable the ductile post-yield behaviour. Our results suggest that a change in mineralisation and fibril-to-matrix interaction leads to different mechanical properties among mineralised tissues. Our model operates at crystalline-, molecular- and continuum-levels and sheds light on the micro- and nanoscale deformation of fibril-matrix reinforced composites.

Details

ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....2165d7e9460d26115fcb05f3d4bf9a91