Back to Search
Start Over
The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen
- Source :
- Anesthesia and analgesia. 104(6)
- Publication Year :
- 2007
-
Abstract
- BACKGROUND: High fractions of inspired oxygen (Fio2) result in resorption atelectasis shortly after their application. However, the impact of different levels of Fio2 and their interaction with positive end-expiratory pressure (PEEP) on functional residual capacity (FRC) and ventilation distribution is unknown in anesthetized children. We hypothesized that the use of a Fio2 of 1.0 results in a decrease of FRC and ventilation homogeneity compared with that of a Fio2 of 0.3, and that this decrease is prevented by PEEP of 6-cm H2O compared to a PEEP of 3-cm H2O. METHODS: Forty-six children (3–6 yr) without cardiopulmonary disease were randomly allocated to receive PEEP of 6-cm H2O (PEEP 6 group) during the entire study period or PEEP of 3-cm H2O (PEEP 3 group). The order of the Fio2 (0.3 or 1.0) was also randomized. A defined recruitment maneuver was performed after tracheal intubation and 5 min later the first measurement. This procedure was then repeated with the second Fio2 level. FRC and lung clearance index (LCI) were calculated by a blinded observer. RESULTS: While FRC (mean sd) was similar at both levels of Fio2 (0.3: 25.6 2.9 mL/kg vs 1.0: 25.6 2.8 mL/kg, P 0.189) in the PEEP 6 group, FRC decreased in the PEEP 3 group (0.3: 24.9 3.8 vs 1.0: 21.7 4.1, P 0.0001). Furthermore, with continuous PEEP of 6-cm H2O a similar LCI was observed at both levels of Fio2 (0.3: 6.45 0.4 vs 6.43 0.4, P 0.668) while LCI increased at the higher Fio2 in the PEEP 3 group (0.3: 6.5 0.5 vs 1.0: 7.7 1.2, P 0.0001). CONCLUSIONS: During the application of a very low PEEP of 3–cm H2O, FRC and ventilation distribution decreased significantly at an Fio2 of 1.0 compared with that at an Fio2 of 0.3. This decrease could be counterbalanced by the administration of PEEP of 6-cm H2O, indicating that a low level of PEEP is sufficient to maintain FRC and ventilation distribution regardless of the oxygen concentration.
- Subjects :
- Male
Functional Residual Capacity
medicine.medical_treatment
chemistry.chemical_element
Lung Clearance Index
Anesthesia, General
Oxygen
Positive-Pressure Respiration
Functional residual capacity
Recruitment maneuver
Medicine
Humans
Child
Positive end-expiratory pressure
Cardiopulmonary disease
business.industry
Resorption Atelectasis
Tracheal intubation
Total Lung Capacity
respiratory system
respiratory tract diseases
Residual Volume
Anesthesiology and Pain Medicine
chemistry
Inhalation
Anesthesia
Child, Preschool
Female
business
Pulmonary Ventilation
therapeutics
circulatory and respiratory physiology
Subjects
Details
- ISSN :
- 15267598
- Volume :
- 104
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Anesthesia and analgesia
- Accession number :
- edsair.doi.dedup.....2135fcb112db73c3387f06760b722d3e