Back to Search Start Over

LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements

Authors :
Matteo Valsecchi
Karl R. Gegenfurtner
Jing Chen
Chen J.
Valsecchi M.
Gegenfurtner K.R.
Source :
Journal of Neurophysiology. 116:18-29
Publication Year :
2016
Publisher :
American Physiological Society, 2016.

Abstract

Several studies have indicated that human observers are very efficient at tracking self-generated hand movements with their gaze, yet it is not clear whether this is simply a by-product of the predictability of self-generated actions or if it results from a deeper coupling of the somatomotor and oculomotor systems. In a first behavioral experiment we compared pursuit performance as observers either followed their own finger or tracked a dot whose motion was externally generated but mimicked their finger motion. We found that even when the dot motion was completely predictable in terms of both onset time and kinematics, pursuit was not identical to that produced as the observers tracked their finger, as evidenced by increased rate of catch-up saccades and by the fact that in the initial phase of the movement gaze was lagging behind the dot, whereas it was ahead of the finger. In a second experiment we recorded EEG in the attempt to find a direct link between the finger motor preparation, indexed by the lateralized readiness potential (LRP) and the latency of smooth pursuit. After taking into account finger movement onset variability, we observed larger LRP amplitudes associated with earlier smooth pursuit onset across trials. The same held across subjects, where average LRP onset correlated with average eye latency. The evidence from both experiments concurs to indicate that a strong coupling exists between the motor systems leading to eye and finger movements and that simple top-down predictive signals are unlikely to support optimal coordination.

Details

ISSN :
15221598 and 00223077
Volume :
116
Database :
OpenAIRE
Journal :
Journal of Neurophysiology
Accession number :
edsair.doi.dedup.....212d6885c414848f139ee5057f4ca922