Back to Search
Start Over
Activation of ventrolateral orbital cortex improves mouse neuropathic pain–induced anxiodepression
- Source :
- JCI Insight, Vol 5, Iss 19 (2020), JCI Insight
- Publication Year :
- 2020
- Publisher :
- American Society for Clinical Investigation, 2020.
-
Abstract
- Depression and anxiety are frequently observed in patients suffering from neuropathic pain. The underlying mechanisms remained unclear. The ventrolateral orbital cortex (VLO) has attracted considerable interest in its role in antidepressive effect in rodents. In the present study, we further investigated the role of the VLO in the anxiodepressive consequences of neuropathic pain in a chronic constriction injury of infraorbital nerve–induced trigeminal neuralgia (TN) mouse model. Elevated plus maze, open field, forced swimming, tail suspension, and sucrose preference tests were used to evaluate anxiodepressive-like behaviors. The results show that chemogenetic activation of bilateral VLO neurons, especially CaMK2A+ pyramidal neurons, blocked the TN-induced anxiodepressive-like behaviors. Chemogenetic and optogenetic activation of VGLUT2+ or inhibition of VGAT+ VLO neurons was sufficient to produce an antianxiodepressive effect in TN mice. Pharmacological activation of D1-like receptors (D1Rs) but not D2Rs in the VLO significantly alleviated TN-induced depressive-like behaviors. Electrophysiological recordings revealed a decreased excitability of VLO excitatory neurons following neuropathic pain. Furthermore, activation of submedius thalamic nucleus–VLO (Sm-VLO) projection mimicked the antianxiodepressive effect of VLO excitation. Conversely, activation of VLO-periaqueductal gray matter (PAG) projection had no effect on TN-induced anxiodepressive behaviors. This study provides a potentially novel mechanism–based therapeutic strategy for the anxiodepressive consequences of neuropathic pain.<br />Activating excitatory neurons or inhibiting GABAergice neurons of the VLO improved anxiodepressive consequences of neuropathic pain in a trigeminal neuralgia mouse model.
- Subjects :
- Male
0301 basic medicine
Elevated plus maze
Pain
Prefrontal Cortex
Anxiety
Optogenetics
Open field
Mice
03 medical and health sciences
0302 clinical medicine
Trigeminal neuralgia
Animals
Medicine
Receptor
Glucose Transporter Type 2
Depression
business.industry
General Medicine
medicine.disease
Antidepressive Agents
Mice, Inbred C57BL
Electrophysiology
030104 developmental biology
030220 oncology & carcinogenesis
Neuropathic pain
Excitatory postsynaptic potential
Neuralgia
Female
Calcium-Calmodulin-Dependent Protein Kinase Type 2
business
Neuroscience
Neurological disorders
Research Article
Subjects
Details
- ISSN :
- 23793708
- Volume :
- 5
- Database :
- OpenAIRE
- Journal :
- JCI Insight
- Accession number :
- edsair.doi.dedup.....21131374db4460866041932aa0189427
- Full Text :
- https://doi.org/10.1172/jci.insight.133625