Back to Search Start Over

Chromodynamic multirelaxation-time lattice Boltzmann scheme for fluids with density difference

Authors :
Xu Xu
Ian Halliday
James Spendlove
Torsten Schenkel
O.J Halliday
Source :
Physical Review E. 102
Publication Year :
2020
Publisher :
American Physical Society (APS), 2020.

Abstract

We develop, after Dellar (P. J. Dellar, Phys. Rev. E. 65, 036309 (2002), J. Comput. Phys. 190, pp351 (2003)), a multiple-relaxation time (MRT), chromodynamic, multi-component lattice Boltzmann equation (MCLBE) scheme for simulation of isothermal, immiscible fluid flow with a density contrast. It is based on Lishchuk's method (J. U. Brackbill, D. B. Kothe and C. Zemach, J. Comp. Phys. 100, 335-354 (1992), S. V. Lishchuk, C. M. Care and I. Halliday, Phys. Rev. E. 67(3), 036701(2), (2003)) and the segregation of d'Ortona et al. (U. D'Ortona, D. Salin, M. Cieplak, R. B. Rybka and J. R. Banavar Phys. Rev. E. 51, 3718, (1995)). We focus on fundamental model verifiability but do relate some of our data to that from previous approaches, due to Ba et al. (Y. Ba, H. Liu, Q. Li, Q. Kang and J. Sun, Phys. Rev. E 94, 023310 (2016)) and earlier Liu et al. (H. Liu, A. J. Valocchi and Q. Kang, Phys. Rev. E 85, 046309 (2012)), who pioneered large density difference chromodynamic MCLBE and showed the practical benefits of a MRT collision model. Specifically, we test the extent to which chromodynamic MCLBE MRT schemes comply with the kinematic condition of mutual impenetrability and the continuous traction condition by developing analytical benchmarking flows. We conclude that our data, taken with those of Ba et al., verify the utility of MRT chromodynamic MCLBE.<br />submitted to PRE

Details

ISSN :
24700053 and 24700045
Volume :
102
Database :
OpenAIRE
Journal :
Physical Review E
Accession number :
edsair.doi.dedup.....20f7fc148d476c659e5abb0dd4794105