Back to Search
Start Over
3D Ising model: a view from the conformal bootstrap island
- Source :
- Comptes Rendus Physique, Comptes Rendus Physique, 2020, 21 (2), pp.185-198. ⟨10.5802/crphys.23⟩
- Publication Year :
- 2020
- Publisher :
- Cellule MathDoc/CEDRAM, 2020.
-
Abstract
- We explain how the axioms of Conformal Field Theory are used to make predictions about critical exponents of continuous phase transitions in three dimensions, via a procedure called the conformal bootstrap. The method assumes conformal invariance of correlation functions, and imposes some relations between correlation functions of different orders. Numerical analysis shows that these conditions are incompatible unless the critical exponents take particular values, or more precisely that they must belong to a small island in the parameter space.<br />Comment: 16 pages, 3 figures, accepted for publication by C.R.Physique
- Subjects :
- High Energy Physics - Theory
invariance: conformal
bootstrap: conformal
dimension: 3
Critical phenomena
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
General Physics and Astronomy
Conformal map
Parameter space
01 natural sciences
010305 fluids & plasmas
Conformal symmetry
Mathematics - Quantum Algebra
Ising model
0103 physical sciences
FOS: Mathematics
Quantum Algebra (math.QA)
correlation function
Statistical physics
010306 general physics
Mathematical Physics
Condensed Matter - Statistical Mechanics
Mathematics
field theory: conformal
Statistical Mechanics (cond-mat.stat-mech)
Conformal field theory
Probability (math.PR)
Mathematical Physics (math-ph)
critical phenomena
16. Peace & justice
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
Correlation function (statistical mechanics)
High Energy Physics - Theory (hep-th)
Critical exponent
Mathematics - Probability
Subjects
Details
- ISSN :
- 18781535
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Comptes Rendus. Physique
- Accession number :
- edsair.doi.dedup.....20f71f39fb89c553f65f53437993578d