Back to Search Start Over

Deformed General Relativity and Quantum Black Holes Interior

Authors :
Karim Noui
Jibril Ben Achour
Denis Arruga
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Fédération de recherche Denis Poisson (FDP)
Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Université de Tours-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Source :
Universe, Vol 6, Iss 3, p 39 (2020), Universe, Universe, 2020, 6 (3), pp.39. ⟨10.3390/universe6030039⟩, Volume 6, Issue 3
Publication Year :
2019

Abstract

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance can not be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study homogeneous solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition.<br />29 pages, invited contribution to special Issue: "Probing New Physics with Black holes", Matched the published version in Universe

Details

Language :
English
ISSN :
22181997
Database :
OpenAIRE
Journal :
Universe, Vol 6, Iss 3, p 39 (2020), Universe, Universe, 2020, 6 (3), pp.39. ⟨10.3390/universe6030039⟩, Volume 6, Issue 3
Accession number :
edsair.doi.dedup.....20eef0c56d10ef2bcd3d063b4e799275
Full Text :
https://doi.org/10.3390/universe6030039⟩