Back to Search Start Over

Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions

Authors :
Maximilian G. Bartmann
Minh Anh Luong
Hamid Keshmiri
Zahra Sadre-Momtaz
Nicholas A. Güsken
Alois Lugstein
Masiar Sistani
Martien Den Hertog
Rupert F. Oulton
Vienna University of Technology (TU Wien)
Blackett Laboratory
Imperial College London
Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA )
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Matériaux, Rayonnements, Structure (MRS)
Institut Néel (NEEL)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Matériaux, Rayonnements, Structure (NEEL - MRS)
Source :
ACS photonics, ACS photonics, American Chemical Society, 2020, 7 (7), pp.1642-1648. ⟨10.1021/acsphotonics.0c00557⟩, ACS Photonics, ACS photonics, 2020, 7 (7), pp.1642-1648. ⟨10.1021/acsphotonics.0c00557⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal-semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal-semiconductor (Al-Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal-semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al-Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance.

Details

Language :
English
ISSN :
23304022
Database :
OpenAIRE
Journal :
ACS photonics, ACS photonics, American Chemical Society, 2020, 7 (7), pp.1642-1648. ⟨10.1021/acsphotonics.0c00557⟩, ACS Photonics, ACS photonics, 2020, 7 (7), pp.1642-1648. ⟨10.1021/acsphotonics.0c00557⟩
Accession number :
edsair.doi.dedup.....20e0f5af72bc05142f54e5d375d31e56