Back to Search Start Over

A real time neural energy management strategy for a hybrid pneumatic engine

Authors :
Guillaume Colin
Yann Chamaillard
Andrej Ivanco
Gérard Bloch
F2ME
Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique (PRISME)
Université d'Orléans (UO)-Ecole Nationale Supérieure d'Ingénieurs de Bourges (ENSI Bourges)-Université d'Orléans (UO)-Ecole Nationale Supérieure d'Ingénieurs de Bourges (ENSI Bourges)
Centre de Recherche en Automatique de Nancy (CRAN)
Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
ANR-08-SEGI-0004,ArHyCo,Architectures Hybrides et Contraintes(2008)
Bloch, Gérard
Systèmes Embarqués et Grandes Infrastructures - Architectures Hybrides et Contraintes - - ArHyCo2008 - ANR-08-SEGI-0004 - ARPEGE - VALID
Source :
IFAC Symposium Advances in Automotive Control, AAC 2010, IFAC Symposium Advances in Automotive Control, AAC 2010, Jul 2010, Munich, Germany. pp.CDROM
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; Various energy management strategies for a hybrid pneumatic engine are reviewed and a real time neural control strategy proposed. This Neural Network strategy learns off line the optimal control given by Dynamic Programming and the resulting control model is applied on line. The dierent strategies are simulated with a backward vehicle model for various driving cycles and their fuel consumptions compared. The results show that the Neural Network strategy is better than a classical Equivalent Consumption Minimization Strategy (ECMS) and equivalent to a Variable Penalty Coecient Strategy with Driving Pattern Recognition.

Details

Language :
English
Database :
OpenAIRE
Journal :
IFAC Symposium Advances in Automotive Control, AAC 2010, IFAC Symposium Advances in Automotive Control, AAC 2010, Jul 2010, Munich, Germany. pp.CDROM
Accession number :
edsair.doi.dedup.....20dfd53c0a57a3382ad86262d5278e98