Back to Search Start Over

Approximation results and subspace correction algorithms for implicit variational inequalities

Authors :
Lori Badea
Marius Cocou
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Matériaux et Structures (M&S)
Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA )
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Européen Associé CNRS Franco-Roumain de Mathématiques et Modélisation LEA Math-Mode
Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
Source :
Discrete and Continuous Dynamical Systems-Series S, Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2013, 6 (6), pp.1507-1524. ⟨10.3934/dcdss.2013.6.1507⟩, Discrete and Continuous Dynamical Systems-Series S, 2013, 6 (6), pp.1507-1524. ⟨10.3934/dcdss.2013.6.1507⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; This paper deals with the mathematical analysis and the subspace approximation of a system of variational inequalities representing a unified approach to several quasistatic contact problems in elasticity. Using an implicit time discretization scheme and some estimates, convergence properties of the incremental solutions and existence results are presented for a class of abstract implicit evolution variational inequalities involving a nonlinear operator. To solve the corresponding semi-discrete and the fully discrete problems, some general subspace correction algorithms are proposed, for which global convergence is analyzed and error estimates are established.

Details

Language :
English
ISSN :
19371632 and 19371179
Database :
OpenAIRE
Journal :
Discrete and Continuous Dynamical Systems-Series S, Discrete and Continuous Dynamical Systems-Series S, American Institute of Mathematical Sciences, 2013, 6 (6), pp.1507-1524. ⟨10.3934/dcdss.2013.6.1507⟩, Discrete and Continuous Dynamical Systems-Series S, 2013, 6 (6), pp.1507-1524. ⟨10.3934/dcdss.2013.6.1507⟩
Accession number :
edsair.doi.dedup.....20cc48b9a61a25e57c9623a496b8d048
Full Text :
https://doi.org/10.3934/dcdss.2013.6.1507⟩