Back to Search Start Over

The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model

Authors :
Lauren A. Pace
Thomas L. Smith
Johannes F. Plate
Mark Van Dyke
Source :
Biomaterials. 34:5907-5914
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

Peripheral nerve injuries requiring surgery can be repaired by autograft, the clinical "gold standard", allograft, or nerve conduits. Most published clinical studies show the effectiveness of nerve conduits in small size defects in sensory nerves. Many preclinical studies suggest that peripheral nerve regeneration through conduits can be enhanced and repair lengths increased with the use of a biomaterial filler in the conduit lumen. We have previously shown that a luminal hydrogel filler derived from human hair keratin (HHK) can improve electrophysiological and histological outcomes in mouse, rabbit, and non-human primate nerve injury models, but insight into potential mechanisms has been lacking. Based on the premise that a keratin biomaterial (KOS) hydrogel provides an instantaneous structural matrix within the lumen, the current study compares the cellular behavior elicited by KOS hydrogel to Matrigel (MAT) and saline (SAL) conduit fillers in a 1 cm rat sciatic nerve injury model at early stages of regeneration. While there was little difference in initial cellular influx, the KOS group showed earlier migration of dedifferentiated Schwann cells (SC) from the proximal nerve end compared to the other groups. The KOS group also showed faster SC dedifferentiation and myelin debris clearance, and decreased macrophage infiltration during Wallerian degeneration of the distal nerve tissue.

Details

ISSN :
01429612
Volume :
34
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....20c721560a9828e6cca9f62f40f4e2fb
Full Text :
https://doi.org/10.1016/j.biomaterials.2013.04.024