Back to Search
Start Over
Alternating Catalan numbers and curves with triple ramification
- Source :
- Dipòsit Digital de la UB, Universidad de Barcelona
- Publication Year :
- 2021
- Publisher :
- Scuola Normale Superiore - Edizioni della Normale, 2021.
-
Abstract
- It is known that the monodromy group of each cover of a general curve of genus g>3 equals either the symmetric or the alternating group. The classical Catalan numbers count the minimal degree covers (with symmetric monodromy) of a general curve of even genus. We solve the analogous problem for the alternating group and we determine the number of alternating covers of minimal degree 2g+1 of a general curve of genus g.<br />18 pages. Minor improvements, also referencing the related work of Lian. Final version to appear in Annali Scuola Normale di Pisa
- Subjects :
- Degree (graph theory)
Algebraic curves
Ramification (botany)
Teoria de grups
Combinatòria (Matemàtica)
Group Theory (math.GR)
Theoretical Computer Science
Algebraic geometry
Combinatorics
Catalan number
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Geometria algebraica
Mathematics (miscellaneous)
FOS: Mathematics
Mathematics - Combinatorics
Computer Science::General Literature
Combinations
Combinatorics (math.CO)
Corbes algebraiques
Group theory
Mathematics - Group Theory
Algebraic Geometry (math.AG)
Mathematics
Subjects
Details
- ISSN :
- 20362145 and 0391173X
- Database :
- OpenAIRE
- Journal :
- ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
- Accession number :
- edsair.doi.dedup.....1ffee171991acb9462e02520e0bb1bfc
- Full Text :
- https://doi.org/10.2422/2036-2145.201909_009