Back to Search Start Over

Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals

Authors :
Chao Wang
Fuzhou Ye
Changqing Chang
Xiaoling Liu
Jianhe Wang
Jinpei Wang
Xin-Fu Yan
Qinqin Fu
Jianuan Zhou
Shaohua Chen
Yong-Gui Gao
Lian-Hui Zhang
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2019
Publisher :
Proceedings of the National Academy of Sciences, 2019.

Abstract

Significance Bacterial infection has been extensively investigated; however, little is known about how bacterial pathogens timely shut down infecting machinery after successful infections. Here, a previously unknown sucrose–SghR/SghA–SAG–SA signaling axis was identified which controls the timing to shut off bacterial virulence expression and fine-tune host immune response. Sucrose, salicylic acid (SA), and its storage form SAG are small chemicals produced in plants whereas SghR is a bacterial sensor of sucrose and SghA is a bacterial enzyme that releases SA from SAG. Given that SA is an imperative signaling molecule in defense against a variety of microbial pathogens, these results depict a previously unknown 2-way chemical signaling cross-talk during microbe–host coevolution and shed mechanistic insights into host–bacteria interaction.<br />It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.

Details

ISSN :
10916490 and 00278424
Volume :
116
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....1ff4e83faebb23f4e01f3d18348de82b