Back to Search Start Over

Thermal form-factor approach to dynamical correlation functions of integrable lattice models

Authors :
Andreas Klümper
Junji Suzuki
Michael Karbach
Frank Göhmann
Karol K. Kozlowski
Laboratoire de Physique de l'ENS Lyon (Phys-ENS)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique de l'ENS Lyon ( Phys-ENS )
École normale supérieure - Lyon ( ENS Lyon ) -Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS )
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
J.Stat.Mech., J.Stat.Mech., 2017, 1711 (11), ⟨10.1088/1742-5468/aa9678⟩, J.Stat.Mech., 2017, 1711 (11), pp.113106. ⟨10.1088/1742-5468/aa9678⟩, J.Stat.Mech., 2017, 1711 (11), pp.113106. 〈10.1088/1742-5468/aa9678〉
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.<br />42 pages, LaTeX, v2: minor corrections, references added, published version, v3: typos corrected

Details

Language :
English
Database :
OpenAIRE
Journal :
J.Stat.Mech., J.Stat.Mech., 2017, 1711 (11), ⟨10.1088/1742-5468/aa9678⟩, J.Stat.Mech., 2017, 1711 (11), pp.113106. ⟨10.1088/1742-5468/aa9678⟩, J.Stat.Mech., 2017, 1711 (11), pp.113106. 〈10.1088/1742-5468/aa9678〉
Accession number :
edsair.doi.dedup.....1fe22bc67e3920c2a00a29a8822a5648
Full Text :
https://doi.org/10.1088/1742-5468/aa9678⟩