Back to Search
Start Over
Breaking the doping limit in silicon by deep impurities
- Source :
- Physical Review Applied 11 (2019): 054039-1–054039-15. doi:10.1103/PhysRevApplied.11.054039, info:cnr-pdr/source/autori:Mao Wang (1,2), A. Debernardi (3), Y. Berencén (1), R. Heller (1), Chi Xu (1,2), Ye Yuan (1,4), Yufang Xie (1,2), R. Böttger (1), L. Rebohle (1), W. Skorupa (1), M. Helm (1,2), S. Prucnal (1) and Shengqiang Zhou (1)/titolo:Breaking the Doping Limit in Silicon by Deep Impurities/doi:10.1103%2FPhysRevApplied.11.054039/rivista:Physical Review Applied/anno:2019/pagina_da:054039-1/pagina_a:054039-15/intervallo_pagine:054039-1–054039-15/volume:11, Physical Review Applied 11(2019), 054039
- Publication Year :
- 2018
-
Abstract
- N-type doping in Si by shallow impurities, such as P, As and Sb, exhibits an intrinsic limit due to the Fermi-level pinning via defect complexes at high doping concentrations. Here we demonstrate that doping Si with the chalcogen Te by non-equilibrium processing, a deep double donor, can exceed this limit and yield higher electron concentrations. In contrast to shallow impurities, both the interstitial Te fraction decreases with increasing doping concentration and substitutional Te dimers become the dominant configuration as effective donors, leading to a non-saturating carrier concentration as well as to an insulator-to-metal transition. First-principle calculations reveal that the Te dimers possess the lowest formation energy and donate two electrons per dimer to the conduction band. These results provide novel insight into physics of deep impurities and lead to a possible solution for the ultra-high electron concentration needed in today's Si-based nanoelectronics.<br />26 pages, including the suppl information
- Subjects :
- Free electron model
Materials science
Silicon
Infrared
General Physics and Astronomy
chemistry.chemical_element
FOS: Physical sciences
02 engineering and technology
01 natural sciences
Condensed Matter::Materials Science
Impurity
Lattice (order)
Condensed Matter::Superconductivity
0103 physical sciences
hyperdoping
010306 general physics
first principles calculations
Condensed Matter - Materials Science
Condensed matter physics
Doping
Materials Science (cond-mat.mtrl-sci)
021001 nanoscience & nanotechnology
chemistry
chalcogen
Condensed Matter::Strongly Correlated Electrons
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Physical Review Applied 11 (2019): 054039-1–054039-15. doi:10.1103/PhysRevApplied.11.054039, info:cnr-pdr/source/autori:Mao Wang (1,2), A. Debernardi (3), Y. Berencén (1), R. Heller (1), Chi Xu (1,2), Ye Yuan (1,4), Yufang Xie (1,2), R. Böttger (1), L. Rebohle (1), W. Skorupa (1), M. Helm (1,2), S. Prucnal (1) and Shengqiang Zhou (1)/titolo:Breaking the Doping Limit in Silicon by Deep Impurities/doi:10.1103%2FPhysRevApplied.11.054039/rivista:Physical Review Applied/anno:2019/pagina_da:054039-1/pagina_a:054039-15/intervallo_pagine:054039-1–054039-15/volume:11, Physical Review Applied 11(2019), 054039
- Accession number :
- edsair.doi.dedup.....1fe1da0836891641f4313e5bb2f083d0