Back to Search
Start Over
Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression
- Source :
- Am J Physiol Heart Circ Physiol
- Publication Year :
- 2021
- Publisher :
- American Physiological Society, 2021.
-
Abstract
- Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets. NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.
- Subjects :
- Amyloid
endocrine system
Physiology
macromolecular substances
Fibril
Cell Movement
Fibrosis
Physiology (medical)
medicine
Humans
Fibroblast
Cell Proliferation
Inflammation
Amyloid Neuropathies, Familial
biology
Chemistry
Myocardium
Amyloidosis
nutritional and metabolic diseases
Fibroblasts
medicine.disease
In vitro
Extracellular Matrix
Cell biology
Transthyretin
medicine.anatomical_structure
Gene Expression Regulation
Cardiac amyloidosis
Heart failure
biology.protein
Cardiology and Cardiovascular Medicine
Research Article
Subjects
Details
- ISSN :
- 15221539 and 03636135
- Volume :
- 321
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Heart and Circulatory Physiology
- Accession number :
- edsair.doi.dedup.....1fc6316501354f30065e907a9254ff99