Back to Search
Start Over
Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Scientific Reports
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Recent clinical studies have suggested that inhalation of incense smoke (IS) may result in impaired lung function and asthma. However, there is little experimental evidence to link IS with airway hyperresponsiveness (AHR) and bronchial epithelial barrier function. Using mouse and cell culture models, we evaluated the effects of IS exposure on AHR, expression of multiple epithelial tight junction (TJ)- and adherens junction-associated mRNAs and proteins in the lungs, and the barrier function of bronchial epithelial cells assessed by transepithelial electronic resistance (TEER). Exposure of BALB/c mice to IS increased AHR and inflammatory macrophage recruitment to BALF; reduced claudin-1, -2, -3, -7, -10b, -12, -15, and -18, occludin, zonula occludens-1 [ZO-1], and E-cadherin mRNA expression; and caused discontinuity of claudin-2 and ZO-1 protein immunostaining in lung tissue. IS extract dose-dependently decreased TEER and increased reactive oxygen species production in bronchial epithelial cell cultures. Treatment with N-acetyl-l-cysteine, but not glucocorticosteroids or long-acting β2-agonists, prevented the detrimental effects of IS. IS exposure can be problematic for respiratory health, as evidenced by AHR, increased recruitment of inflammatory macrophages and disruption of TJ proteins in the lung, and damage to epithelial barrier function. However, antioxidants may be useful for the treatment of IS-induced airway dysfunction.
- Subjects :
- 0301 basic medicine
Science
Bronchi
Respiratory Mucosa
Occludin
medicine.disease_cause
Article
Adherens junction
03 medical and health sciences
Mice
0302 clinical medicine
Smoke
medicine
Respiratory Hypersensitivity
Animals
Lung
Barrier function
Respiratory tract diseases
Mice, Inbred BALB C
Multidisciplinary
Tight Junction Proteins
Tight junction
Chemistry
Adherens Junctions
respiratory system
Cell biology
respiratory tract diseases
Experimental models of disease
Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
030228 respiratory system
Cell culture
Medicine
Female
Immunostaining
Oxidative stress
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 11
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....1f1322a634156739f41d1b8c817c75e4