Back to Search
Start Over
Fractional diffusion: probability distributions and random walk models
- Source :
- 305 (2002): 106–112., info:cnr-pdr/source/autori:Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P./titolo:Fractional diffusion: probability distributions and random walk models/doi:/rivista:/anno:2002/pagina_da:106/pagina_a:112/intervallo_pagine:106–112/volume:305
- Publication Year :
- 2002
- Publisher :
- Zenodo, 2002.
-
Abstract
- We present a variety of models of random walk, discrete in space and time, suitable for simulating random variables whose probability density obeys a space–time fractional diffusion equation. Here we sketch our original approach to the topic that can o er some novel and inspiring inspections. In particular we pay attention to the fact that the fundamental solutions of the proposed fractional di usion equations provide spatial probability densities evolving in time, related to self-similar stochastic processes, that we view as generalized (or fractional) di usion processes to be properly understood through random walk models.
- Subjects :
- Statistics and Probability
Random variate
Heterogeneous random walk in one dimension
Convergence of random variables
Probability theory
Multivariate random variable
Mathematical analysis
Sum of normally distributed random variables
Random element
Random walks
Stable probability distributions
Anomalous di usion
Condensed Matter Physics
Random walk
Mathematics
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 305 (2002): 106–112., info:cnr-pdr/source/autori:Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P./titolo:Fractional diffusion: probability distributions and random walk models/doi:/rivista:/anno:2002/pagina_da:106/pagina_a:112/intervallo_pagine:106–112/volume:305
- Accession number :
- edsair.doi.dedup.....1f02babfcbac1eaf09f3ea4d519126c7