Back to Search Start Over

Optimal control for nonlocal reaction‐diffusion system describing calcium dynamics in cardiac cell

Authors :
Mostafa Bendahmane
Fahd Karami
Elmahdi Erraji
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC
Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux]
Ecole Supérieure de Technologie d'Essaouira
Université Cadi Ayyad [Marrakech] (UCA)
the research program PPR supported by CNRST (Morocco), project 'Modèles Mathématiques appliquées l’environnement, à l’imagerie médicale et aux biosystèmes'
Source :
Mathematical Methods in the Applied Sciences, Mathematical Methods in the Applied Sciences, 2021, 44 (6), pp.4802-4834. ⟨10.1002/mma.7071⟩
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

International audience; The purpose of this paper is to introduce an optimal control for a nonlocal calcium dynamic model in a cardiac cell acting on ryanodine receptors. The optimal control problem is considered as a coupled nonlocal reaction-diffusion system with a transmission boundary condition covering the sarcoplasmic reticulum and cytosolic domain. We establish the well-posedness result of the adjoint problem using Faedo-Galerkin approximation, a priori estimates and compactness arguments. The numerical discretization of direct and adjoint problems is realized by using the implicit Euler method in time and the finite element for spatial discretization. Moreover, we obtain the stability result in the 2-norm for the direct and the adjoint discrete problems. Finally, in order to illustrate the control of our calcium dynamic model, we present some numerical experiments devoted to constant and nonlocal diffusions using the proposed numerical scheme.

Details

ISSN :
10991476 and 01704214
Volume :
44
Database :
OpenAIRE
Journal :
Mathematical Methods in the Applied Sciences
Accession number :
edsair.doi.dedup.....1ef6857517b5ffa90320c69c22862acf