Back to Search Start Over

People detection based on appearance and motion models

Authors :
Alexander G. Hauptmann
José M. Martínez
Alvaro Garcia-Martin
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Tratamiento e Interpretación de Vídeo (ING EPS-006)
Source :
AVSS, Biblos-e Archivo. Repositorio Institucional de la UAM, instname
Publication Year :
2011
Publisher :
IEEE, 2011.

Abstract

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A. Garcia-Martin, A. Hauptmann, and J. M. Martínez "People detection based on appearance and motion models", in 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2011, p. 256-260<br />The main contribution of this paper is a new people detection algorithm based on motion information. The algorithm builds a people motion model based on the Implicit Shape Model (ISM) Framework and the MoSIFT descriptor. We also propose a detection system that integrates appearance, motion and tracking information. Experimental results over sequences extracted from the TRECVID dataset show that our new people motion detector produces results comparable to the state of the art and that the proposed multimodal fusion system improves the obtained results combining the three information sources.<br />This work has been partially supported by the Cátedra UAM-Infoglobal ("Nuevas tecnologías de vídeo aplicadas a sistemas de video-seguridad") and by the Universidad Autónoma de Madrid (“FPI-UAM: Programa propio de ayudas para la Formación de Personal Investigador”)

Details

Database :
OpenAIRE
Journal :
2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
Accession number :
edsair.doi.dedup.....1ed647e0cc7f0af3852acc73d168e94b
Full Text :
https://doi.org/10.1109/avss.2011.6027333