Back to Search
Start Over
Methionine Restriction Exposes a Targetable Redox Vulnerability of Triple-Negative Breast Cancer Cells by Inducing Thioredoxin Reductase
- Source :
- Breast Cancer Res Treat
- Publication Year :
- 2021
-
Abstract
- PURPOSE: Tumor cells are dependent on the glutathione and thioredoxin antioxidant pathways to survive oxidative stress. Since the essential amino acid methionine is converted to glutathione, we hypothesized that methionine restriction (MR) would deplete glutathione and render tumors dependent on the thioredoxin pathway and its rate-limiting enzyme thioredoxin reductase (TXNRD). METHODS: Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control or MR media and the effects on reactive oxygen species (ROS) and antioxidant signaling were examined. To determine the role of TXNRD in MR-induced cell death, TXNRD1 was inhibited by RNAi or the pan-TXNRD inhibitor auranofin, an antirheumatic agent. Metastatic and PDX TNBC mouse models were utilized to evaluate in vivo antitumor activity. RESULTS: MR rapidly and transiently increased ROS, depleted glutathione and decreased the ratio of reduced glutathione/oxidized glutathione in TNBC cells. TXNRD1 mRNA and protein levels were induced by MR via a ROS-dependent mechanism mediated by the transcriptional regulators NRF2 and ATF4. MR dramatically sensitized TNBC cells to TXNRD1 silencing and the TXNRD inhibitor auranofin, as determined by crystal violet staining and caspase activity; these effects were suppressed by the antioxidant N-acetylcysteine. H-Ras-transformed MCF-10A cells, but not untransformed MCF-10A cells, were highly sensitive to the combination of auranofin and MR. Furthermore, dietary MR induced TXNRD1 expression in mammary tumors and enhanced the antitumor effects of auranofin in metastatic and PDX TNBC murine models. CONCLUSION: MR exposes a vulnerability of TNBC cells to the TXNRD inhibitor auranofin by increasing expression of its molecular target and creating a dependency on the thioredoxin pathway.
- Subjects :
- Cancer Research
Thioredoxin Reductase 1
Antioxidant
Auranofin
Thioredoxin-Disulfide Reductase
medicine.medical_treatment
Thioredoxin reductase
Triple Negative Breast Neoplasms
medicine.disease_cause
Article
chemistry.chemical_compound
Mice
Methionine
medicine
Animals
Humans
chemistry.chemical_classification
Reactive oxygen species
Glutathione
Oncology
chemistry
Cancer research
Thioredoxin
Oxidation-Reduction
Oxidative stress
medicine.drug
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Breast Cancer Res Treat
- Accession number :
- edsair.doi.dedup.....1ed5e4fa71fc46a7b75fba7ccb86a129