Back to Search Start Over

Chronic Fatigue Syndrome: Exercise Performance Related to Immune Dysfunction

Authors :
Neil R. McGregor
Kenny De Meirleir
Elke Van Hoof
Jo Nijs
Mira Meeus
Guy De Schutter
Romain Meeusen
Human Physiology and Special Physiology of Physical Education
Tempus Omnia Revelat
Faculty of Physical Education and Physical Therapy
Medicine and Pharmacy academic/administration
Human Physiology and Physiology of Physical Education
Source :
Medicine & Science in Sports & Exercise. 37:1647-1654
Publication Year :
2005
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2005.

Abstract

NIJS, J., M. MEEUS, N. R. MCGREGOR, R. MEEUSEN, G. DE SCHUTTER, E. VAN HOOF, and K. DE MEIRLEIR. Chronic Fatigue Syndrome: Exercise Performance Related to Immune Dysfunction. Med. Sci. Sports Exerc., Vol. 37, No. 10, pp. 1647–1654, 2005. Purpose: To date, the exact cause of abnormal exercise response in chronic fatigue syndrome (CFS) remains to be revealed, but evidence addressing intracellular immune deregulation in CFS is growing. Therefore, the aim of this cross-sectional study was to examine the interactions between several intracellular immune variables and exercise performance in CFS patients. Methods: After venous blood sampling, subjects (16 CFS patients) performed a maximal exercise stress test on a bicycle ergometer with continuous monitoring of cardiorespiratory variables. The following immune variables were assessed: the ratio of 37 kDa Ribonuclease (RNase) L to the 83 kDa native RNase L (using a radiolabeled ligand/receptor assay), RNase L enzymatic activity (enzymatic assay), protein kinase R activity assay (comparison Western blot), elastase activity (enzymatic– colorimetric assay), the percent of monocytes, and nitric oxide determination (for monocytes and lymphocytes; flow cytometry, live cell assay). Results: Forward stepwise multiple regression analysis revealed 1) that elastase activity was the only factor related to the reduction in oxygen uptake at a respiratory exchange ratio (RER) of 1.0 (regression model: R 2 0.53, F (1,14) 15.5, P 0.002; elastase activity P 0.002); 2) that the protein kinase R activity was the principle factor related to the reduction in workload at RER 1.0; and 3) that elastase activity was the principle factor related to the reduction in percent of target heart rate achieved. Conclusion: These data provide evidence for an association between intracellular immune deregulation and exercise performance in patients with CFS. To establish a causal relationship, further study of these interactions using a prospective longitudinal design is required. Key Words: EXERCISE PHYSIOLOGY, IMMUNITY, ELASTASE, PROTEIN KINASE R

Details

ISSN :
01959131
Volume :
37
Database :
OpenAIRE
Journal :
Medicine & Science in Sports & Exercise
Accession number :
edsair.doi.dedup.....1ec3d774df72566adf539f240d729783
Full Text :
https://doi.org/10.1249/01.mss.0000181680.35503.ce