Back to Search
Start Over
On a Markov construction of couplings
- Publication Year :
- 2023
- Publisher :
- arXiv, 2023.
-
Abstract
- For $N\in\mathbb{N}$, let $\pi_N$ be the law of the number of fixed points of a random permutation of $\{1, 2, ..., N\}$. Let $\mathcal{P}$ be a Poisson law of parameter 1.A classical result shows that $\pi_N$ converges to $\mathcal{P}$ for large $N$ and indeed in total variation $$\left\Vert \pi_N-\mathcal{P}\right\Vert_{\mathrm{tv}} \leq \frac{2^N}{(N+1)!}$$ This implies that $\pi_N$ and $\mathcal{P}$ can be coupled to at least this accuracy. This paper constructs such a coupling (a long open problem) using the machinery of intertwining of two Markov chains. This method shows promise for related problems of random matrix theory.
- Subjects :
- [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Coupling
Markov approach
Uniform random permutation
Number of fixed point(s)
MSC2020: primary: 60J10, secondary: 05A05, 60E15, 60J22, 60J80, 37A25
Probability (math.PR)
FOS: Mathematics
Poisson approximation
Intertwining
Mathematics - Probability
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1e9ba8394bdd636372dbce795a291e94
- Full Text :
- https://doi.org/10.48550/arxiv.2305.02580