Back to Search
Start Over
SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions
- Source :
- Nucleic acids research 50 (2022): D858–D866. doi:10.1093/nar/gkab977, info:cnr-pdr/source/autori:Mariona Torrens-Fontanals, Alejandro Peralta-García, Carmine Talarico, Ramon Guixà-González, Toni Giorgino, Jana Selent/titolo:SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions/doi:10.1093%2Fnar%2Fgkab977/rivista:Nucleic acids research/anno:2022/pagina_da:D858/pagina_a:D866/intervallo_pagine:D858–D866/volume:50, Nucleic Acids Research
- Publication Year :
- 2022
- Publisher :
- Oxford University Press, Oxford , Regno Unito, 2022.
-
Abstract
- SCoV2-MD (www.scov2-md.org) is a new online resource that systematically organizes atomistic simulations of the SARS-CoV-2 proteome. The database includes simulations produced by leading groups using molecular dynamics (MD) methods to investigate the structure-dynamics-function relationships of viral proteins. SCoV2-MD cross-references the molecular data with the pandemic evolution by tracking all available variants sequenced during the pandemic and deposited in the GISAID resource. SCoV2-MD enables the interactive analysis of the deposited trajectories through a web interface, which enables users to search by viral protein, isolate, phylogenetic attributes, or specific point mutation. Each mutation can then be analyzed interactively combining static (e.g. a variety of amino acid substitution penalties) and dynamic (time-dependent data derived from the dynamics of the local geometry) scores. Dynamic scores can be computed on the basis of nine non-covalent interaction types, including steric properties, solvent accessibility, hydrogen bonding, and other types of chemical interactions. Where available, experimental data such as antibody escape and change in binding affinities from deep mutational scanning experiments are also made available. All metrics can be combined to build predefined or custom scores to interrogate the impact of evolving variants on protein structure and function.<br />Graphical Abstract Graphical AbstractSCoV2-MD integrates structural dynamics of SARS-CoV-2 proteins with mutation events from virus evolution. Static and dynamic properties of each mutation can be combined to obtain predictions of its impact on viral proteins.
- Subjects :
- Gene Expression Regulation, Viral
Models, Molecular
AcademicSubjects/SCI00010
Viral protein
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
NAR Breakthrough Article
Genome, Viral
Molecular Dynamics Simulation
Biology
computer.software_genre
medicine.disease_cause
Evolution, Molecular
genomic
Structure-Activity Relationship
Viral Proteins
Molecular dynamics
Databases, Genetic
Protein Interaction Mapping
Genetics
medicine
Humans
Point Mutation
structural biology
Phylogeny
database
Binding affinities
Internet
Database
Phylogenetic tree
SARS-CoV-2
COVID-19
Experimental data
Hydrogen Bonding
molecular dynamics
variant
Mutation (genetic algorithm)
Proteome
computer
Software
Protein Binding
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Nucleic acids research 50 (2022): D858–D866. doi:10.1093/nar/gkab977, info:cnr-pdr/source/autori:Mariona Torrens-Fontanals, Alejandro Peralta-García, Carmine Talarico, Ramon Guixà-González, Toni Giorgino, Jana Selent/titolo:SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions/doi:10.1093%2Fnar%2Fgkab977/rivista:Nucleic acids research/anno:2022/pagina_da:D858/pagina_a:D866/intervallo_pagine:D858–D866/volume:50, Nucleic Acids Research
- Accession number :
- edsair.doi.dedup.....1e993cea84676d5218a8f1d0335f5118
- Full Text :
- https://doi.org/10.1093/nar/gkab977