Back to Search Start Over

Quantum analogue of a Kerr black hole and the Penrose effect in a Bose-Einstein condensate

Authors :
C. Leblanc
Sergei V. Koniakhin
Dmitry Solnyshkov
O. Bleu
Guillaume Malpuech
Institut Pascal - Clermont Auvergne (IP)
Sigma CLERMONT (Sigma CLERMONT)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016)
Source :
Phys.Rev.B, Phys.Rev.B, 2019, 99 (21), pp.214511. ⟨10.1103/PhysRevB.99.214511⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Analogue physics became very popular in recent decades. It allows simulating inaccessible physical phenomena, such as black holes, in the laboratory. The first success of analogue physics is in fact much older being due to Maxwell, who derived his equations for the electromagnetic field by analogy with fluid dynamics in presence of vortices. Here we propose to use vortices for analogue gravity. We implement an acoustic Kerr black hole with quantized angular momentum in a Bose-Einstein condensate. We show that the condensate's metric is equivalent to the Kerr's one, exhibiting a horizon and an ergosphere. We confirm that this metric is obeyed not only by weak density waves, but also by quantum vortices which behave as massive test particles. We use these topological defects to demonstrate a quantum Penrose effect, extracting the rotation energy of the black hole by quanta of angular momentum. The particle trajectories are well described by the timelike geodesics of the Kerr metric, confirming the potential of analogue quantum gravity.

Details

Language :
English
Database :
OpenAIRE
Journal :
Phys.Rev.B, Phys.Rev.B, 2019, 99 (21), pp.214511. ⟨10.1103/PhysRevB.99.214511⟩
Accession number :
edsair.doi.dedup.....1e96e03e8c1028c3af925a106ea08abb
Full Text :
https://doi.org/10.1103/PhysRevB.99.214511⟩