Back to Search Start Over

Inhibition of MUS81 by siRNA Reverses Resistance to Cisplatin in Human Ovarian Cancer Cell Lines

Authors :
Christopher N. Parris
Helen A. Foster
Hussein Al-Ali
Emma C. Bourton
Sheba Adam-Zahir
Piers N. Plowman
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Bacground: Drugs that induce DNA interstrand crosslinks form the mainstay of anticancer treatments for different cancers. These drugs are used to treat ovarian cancer which is the most prevalent gynaecological cancer. Five-year survival rates are approximately 40% and the development of drug resistant disease is an important factor in treatment failure. Methods: In this study a comprehensive evaluation of the expression and function of the site-specific endonuclease MUS81 was conducted. Using quantitative real time PCR analysis and imaging flow cytometry we determined the mRNA and protein expression of MUS81 in three ovarian cancer cell lines and two immortalised human fibroblast cell lines which had been made resistant to cisplatin by chronic exposure. siRNA knockdown of MUS81 was employed to determine the effect on overall cell survival which was assessed using clonogenic assays. Results: In the five cisplatin-resistant cell lines we observed increased MUS81 mRNA expression. In addition MUS81 protein expression in the form of discrete nuclear foci in cells was observed in all cell lines following cisplatin exposure, there being significantly more foci in cisplatin resistant cell lines. siRNA knockdown of MUS81 significantly reduced both mRNA and protein levels in two cell lines (SK-OV-3 and MRC5-SV1 – wild-type and resistant) and critically re-sensitised cisplatin resistant cells to wild-type level, determined by clonogenic assay.Conclusion: MUS81 is central to the development of cisplatin resistance in ovarian cancer cell lines. Inhibition of MUS81 restored drug sensitivity to the cells. MUS81 may be a useful therapeutic target to overcome drug resistance in ovarian and other cancers.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1e96cd3f1087b6d2146d33aeec172ff6