Back to Search Start Over

An Advection-Robust Hybrid High-Order Method for the Oseen Problem

Authors :
Daniele Antonio Di Pietro
Joubine Aghili
Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
COmplex Flows For Energy and Environment (COFFEE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
ANR-15-CE40-0005,HHOMM,Méthodes hybrides d'ordre élevé sur maillages polyédriques(2015)
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
Source :
Journal of Scientific Computing, Journal of Scientific Computing, 2018, 77 (3), pp.1310-1338. ⟨10.1007/s10915-018-0681-2⟩, Journal of Scientific Computing, Springer Verlag, 2018, 77 (3), pp.1310-1338. ⟨10.1007/s10915-018-0681-2⟩
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

International audience; In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer $k\ge 0$, the discrete velocity unknowns are vector-valued polynomials of total degree $\le k$ on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree $\le k$ on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree $\le(k+1)$, a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element $T$ of diameter $h_T$ contributes to the discretization error with an $\mathcal{O}(h_T^{k+1})$-term in the diffusion-dominated regime, an $\mathcal{O}(h_T^{k+\frac12})$-term in the advection-dominated regime, and scales with intermediate powers of $h_T$ in between. Numerical results complete the exposition.

Details

ISSN :
15737691 and 08857474
Volume :
77
Database :
OpenAIRE
Journal :
Journal of Scientific Computing
Accession number :
edsair.doi.dedup.....1e5b05229254b01d8a87b22a52840d5a
Full Text :
https://doi.org/10.1007/s10915-018-0681-2