Back to Search
Start Over
Evaluation of Reinforcement Learning Traffic Signalling Strategies for Alternative Objectives: Implementation in the Network of Nicosia, Cyprus
- Source :
- Transport and Telecommunication, Vol 21, Iss 4, Pp 295-302 (2020)
- Publication Year :
- 2020
- Publisher :
- Walter de Gruyter GmbH, 2020.
-
Abstract
- Smart Cities promise to their residents, quick journeys in a clean and sustainable environment. Despite, the benefits accrued by the introduction of traffic management solutions (e.g. improved travel times, maximisation of throughput, etc.), these solutions usually fall short on assessing the environmental impact around the implementation areas. However, environmental performance corresponds to a primary goal of contemporary mobility planning and therefore, solutions guaranteeing environmental sustainability are significant. This study presents an advanced Artificial Intelligence-based (AI) signal control framework, able to incorporate environmental considerations into the core of signal optimisation processes. More specifically, a highly flexible Reinforcement Learning (RL) algorithm has been developed towards the identification of efficient but-more importantly-environmentally friendly signal control strategies. The methodology is deployed on a large-scale micro-simulation environment able to realistically represent urban traffic conditions. Alternative signal control strategies are designed, applied, and evaluated against their achieved traffic efficiency and environmental footprint. Based on the results obtained from the application of the methodology on a core part of the road urban network of Nicosia, Cyprus the best strategy achieved a 4.8% increase of the network throughput, 17.7% decrease of the average queue length and a remarkable 34.2% decrease of delay while considerably reduced the CO emissions by 8.1%. The encouraging results showcase ability of RL-based traffic signal controlling to ensure improved air-quality conditions for the residents of dense urban areas.
- Subjects :
- reinforcement learning
traffic signal control
050210 logistics & transportation
Process management
Computer science
05 social sciences
General Engineering
traffic management
large-scale micro-simulation
010501 environmental sciences
air quality
K4011-4343
01 natural sciences
Transportation and communication
Computer Science Applications
Signalling
0502 economics and business
Reinforcement learning
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 14076179
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Transport and Telecommunication Journal
- Accession number :
- edsair.doi.dedup.....1e2be53af36cde9b5ca3d83d2e6a5b9f